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Luminance-defined salience – targets among distractors

Hans-Christoph Nothdurft
Visual Perception Laboratory (VPL) Göttingen, Germany

Salience  in  vision  is  achieved  from various  stimulus  properties;  luminance  differences  are  the  most
frequent ones in daily life. This study investigated properties of luminance-defined target salience and
explored the rules of how salience changes when the target, its surrounding background, or distractors
nearby change  their  luminance.  Two experimental  sections  of  the  paper  present  data  when  subjects
matched targets in different surroundings (luminance range 5.5–68 cd/m2) for equal salience. In a third,
computational  section  these  data  are  compared  with  predictions  from  various  algorithms.  Some
observations can be generalized. (1) Salience computations differ between dark and bright targets, and
between targets in different rankings to distractors. For dark maximum targets (the target is the darkest
item in the scene), salience computation followed the constant-addition principle, that is, targets appeared
equally salient when their luminance difference to distractors was the same; the background luminance
was (almost) not important. For bright targets, salience computation often followed the salmin algorithm,
a  modification  of  the  constant-ratio  principle  (Weber  contrast);  background  luminance  settings  were
important.  But deviations from these rules were also seen. Particularly good performance with bright
targets  was  sometimes  obtained  with  the  averages of  two  algorithms.  (2)  In  cross-polarity  salience
matches (bright targets compared with dark targets) predictions of equal salience matches were strongly
improved  when  luminance  scales  were  power-transformed.  This  was  not  the  case  for  same-polarity
matches  (e.g.,  dark  targets  matched  against  dark  targets).  (3)  Different  aspects  of  salience  must  be
distinguished, such as discrimination salience (which distinguishes the target from distractors) and item
salience (which distinguishes targets from background). In certain stimulus configurations, item salience
can be smaller than discrimination salience and may then affect the perceived salience of a target. (4) In
computational analysis, quite a few algorithms could explain certain experimental data and failed with
others. There was no single “super” algorithm that could reliably predict all salience matches of different
target  combinations.  Major findings are  demonstrated and  the role of  salience  variations with retinal
eccentricity is discussed.  © Author
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INTRODUCTION

Hints for reading: The Introduction is short. It reminds
you that salience is important, graded, and that exact
estimates of salience should be appreciated. Look at
Fig.1 if you have not heard of the maximum-minimum
paradigm.

An important aspect of vision is the relative salience of
objects which may bring some items faster into the focus
of attention than others (Nothdurft, 2002, 2006b; Töllner,
Zehetleitner,  Gramann,  &  Müller,  2011;  Treue,  2003;
Turatto & Galfano, 2000; Zehetleitner, Koch, Goschy, &
Müller,  2013).  This  difference  can  be  behaviorally
important,  in  particular  when  attention  is  spread  over
highly  competitive  tasks  (Braun,  1994).  To  understand

visual  processing  it  is  therefore  necessary  not  only  to
distinguish  salient  from  non-salient  objects  but  also  to
measure and identify the relative strength of salience of
different objects in a scene.

This is the second of two recent papers from my lab on
salience  variations  with  target  luminance.  While  the
previous paper (Nothdurft, 2015) addressed the salience of
single  or  multiple  identical  targets  on  various
backgrounds,  the  present  paper  studies  the  salience  of
targets  among distractors.  The  investigated  parameter  is
luminance.  Does  the  salience  of  a  target  change  when
distractors are dimmed or lightened up? And how does it
change when only the background is varied?

Some  puzzling  observations  about  luminance-defined
salience  are  reported  in  the  literature.  For  example,  a
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bright square is generally more salient than a gray square
on the same dark background. But if  the gray square is
shown with multiple bright squares, it may become more
salient  than  these  (Fig. 1;  Nothdurft,  2006a).  However,
there  still  remains  a  salience  difference  between  these
targets, which is similarly found with a dark target among
less dark distractors  and the reversed combination.  That
difference,  here  referred  to  as  the  maximum-minimum
paradigm  (Fig. 1),  has  received  considerable  interest  in
vision  research  but  to  my knowledge  no  study has  yet
come up with an exact description of salience variations in
such patterns. The original distinction between maximum
and minimum targets came from lesion studies (Schiller &
Lee,  1991)  which  reported  that  rhesus  monkeys  could
normally detect both types of targets but failed particularly
in the minimum target condition after lesions of area V4.
Also  later  studies  on  healthy human  observers  reported
differences between these targets; targets in the maximum
target condition  (cf.  Fig. 1)  were  detected  faster  than
targets  in  the  minimum  target condition  (Braun,  1994;
Nothdurft,  2006a; Zenger-Landolt & Fahle,  2001). Even
more, if observers simultaneously had to pay attention to a
different  task,  their  performance  in  detecting  minimum
targets dropped down but not, or less, their performance in
detecting maximum targets (Braun, 1994). These findings
together  had  suggested  different  ways  of  visual
processing; the maximum target was assumed to be found
“pre-attentively”  from  parallel  search  across  all  items
whereas the minimum target was thought to be detected
from an attentive and serial processing of individual items.
Later it was noticed, however, that targets in the minimum
condition  were  generally less  salient  than  targets  in  the
maximum condition (with same but exchanged luminance
settings).  If  the  salience  of  the  minimum  target  was
increased  so  that  targets  in  both  conditions  were  about
equal-salient, then also the two search conditions became
similar  and  required  the  same  amount  of  attention  and
processing time (Nothdurft, 2006a). Variations of salience
with  maximum and  minimum  target  conditions  are  not
well understood, and to clarify the basis of this distinction
was the initial motivation for the present study.

The  more general  goal  of  the study, however,  was to
establish  a  systematic  description  of  luminance-defined
target salience in  multiple-item scenes.  This  goal turned
out to be far more difficult than originally thought and the
study did not lead to one simple rule or formula for the
computation  of  luminance-defined  salience.  That  was
unexpected  for  two reasons.  First,  salience  estimates  of

single  or  multiple  targets  without  distractors  (Nothdurft,
2015) had led to  fairly clear  and reliable  computational
rules, even though different such rules were found to be
working  in  different  conditions.  Second,  variations  of
illumination, and hence variations in target, distractor, and

background luminance  are  common in  our  environment
(sunshine,  clouds,  dimming  lights)  and  one  might  have
assumed  that  the  visual  system  would  handle  such
variations  in  a  simple,  general  way.  Instead,  the
experimental  data  suggest  various  rules  and  algorithms
when  target  salience  is  computed,  depending  on  the
relative  brightness  of  targets  and  distractors,  on  their
luminance polarity to the background and to some extent
also on the intention  of  the  observer.  But this  does  not
mean that target salience from luminance were an entirely
arbitrary and subjective value. Rather, different observers
reported similar perceptual sensations when asked about
the  relative  strength  of  target  salience,  and  produced
similar adjustments  when asked to match two targets  in
salience.  Thus,  the  computation  of  target  salience  from
target,  distractor,  and  background  luminance  appears  to
follow  common  rules  even  if  these  rules  could  not  be
generalized for all test conditions.

Experiments  were  performed  on  artificial  patterns
showing  a  single  target  at  one  luminance,  and  several
identical distractors at another luminance level; all items
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Figure  1. The  maximum-minimum  paradigm.  In  the  maximum
configuration on the left,  the single bright  target  is the brightest
item in the display; all other items (distractors) are dimmer. In the
minimum configuration on the right, the single target is less bright
than distractors. When luminance settings of targets and distractors
are exchanged, as in the examples shown here, the maximum target
is more salient than the minimum target, although the luminance
contrast between targets and distractors is the same. The same is
true for dark items on brighter background, not shown here. One
goal of the study was to measure and predict target salience as a
function of luminance contrast to distractors and background. 
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were  presented  on  a  background  at  a  third  luminance
level. Salience comparisons were made between two such
patterns by asking subjects to  adjust the salience of  the
target  in  one  pattern  to  that  of  the  target  in  the  other
pattern. 

METHODS

Hints for reading: The Method section is important if
you  want  to  understand  what  was  done.  Read  the
overview and the section Computational  Predictions.
Look at Fig.2.

General Overview

The  major  test  procedures  were  similar  to  those  in  the
previous  paper  (Nothdurft,  2015)  except  that  the
homogeneous blobs were now distinguished in one target
and  several  distractors.  Subjects  saw  two  blob  patterns
side-by-side and adjusted the target in one pattern (the test
pattern) to look equal-salient to the target in the second
pattern (the reference pattern). Subjects were instructed to
concentrate only on the salience and conspicuity of items,
not explicitly on their lightness, brightness, luminance, or
contrast. The results were later compared with predictions
from hypothetical  salience  algorithms.  The  deviation  of
predicted from measured data was taken as an indicator of
the fitting quality of each computational algorithm. 

Stimuli

Stimulus  patterns  were  made  of  regular  blob  arrays
(Fig. 2);  the  central  blob  was  the  target.  Targets  and
distractors  were  similar  in  form  (squares,  0.4 deg  by
0.4 deg)  but  differed  in  luminance;  all  distractors  were
identical.  Two raster  widths  were  used  in  different  test
series, a  wide raster of 5 by 7 items at a raster width of
2.1 deg,  and a  dense raster of 9 by 17 items at a raster
width  of  0.5 deg).  Reference  and  test  patterns  always
displayed  the  same  blob  raster,  and  that  raster  was  not
changed within  a  test  series.  In  one  experiment,  also  a
“patched”  configuration  was  used  in  which  targets  and
distractors attached each other so that the background was
not seen; these stimuli showed, in fact, single items on the
distractor background.

The two stimulus patterns were presented side by side at
a target-to-target distance of 10.4 deg, and were inspected

through  a  gray  hard-paper  mask  with  two  vertical,
rectangular  holes  (8.9 deg  x  14.6 deg)  in  front  of  the
monitor (cf. Nothdurft, 2015, Fig. 1). Reference and test
patterns were pseudo-randomly assigned to either side of
the  screen;  each  configuration  was  equally  often
presented. Test patterns were identified by a small (0.1 deg
diameter) green  marker  underneath  to  guide  subjects
which target they could adjust.

All  patterns  were  computer-generated  displays
(60 frames/s)  presented  on  a  17-inch  monitor  75 cm in
front of the observer.

Luminance  Measurements.  Experiments  were
performed in a dim-lightened room (wall luminance about
3 cd/m2) on a monitor with carefully controlled luminance
settings. The luminance range of the monitor was adjusted
to 5.5–68 cd/m2 . 

The  luminance  settings  of  each  stimulus  pattern  are
represented  by three  values:  background,  distractor,  and
target  luminance. Dark  targets  and  distractors  were
produced by higher, bright targets and distractors by lower
background settings in the stimulus pattern. All luminance
settings were computer  controlled via  lookup-tables;  the
exact  luminance  value  of  each  setting  was  measured
offline and repeatedly checked during the course of  the
study. All stimuli were achromatic.
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Figure 2.  Examples of stimulus patterns. Patterns show a DARK
maximum  target  in  wide  and  dense  blob  arrangements.  In  the
experiments,  two  such  patterns  with  different  luminance  settings
(but always same blob density) were shown side-by-side and had to
be  adjusted  so  that  both  targets  appeared  equal-salient  to  the
observer.

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           5

Procedures

The  principle  task  in  all  experiments  was  to  adjust  the
luminance  of  the  test  target  until  it  appeared  equally
salient  in  its  surrounding  as  the  target  of  the  reference
pattern,  which  was  fixed  and  could  not  be  changed.
Subjects  were  encouraged  to  vary test  target  luminance
over  a  wide range to  explore that  either  the test  or  the
reference target was the more salient one, before making
their final adjustment. The available luminance range was
restricted by monitor limitations and was software-blocked
at  luminance  settings  where  further  increments  or
decrements had changed the target’s luminance polarity to
background or distractors. For example, subjects could not
make a dark target brighter, nor a bright target darker than
background and could not convert, e.g., a maximum target
into a minimum target.

Subjects made adjustments by pressing the “+” or “–“
keys  on  a  computer  keyboard,  which  increased  or
decreased the luminance difference between test target and
test distractors (only targets could be changed); a third key
(“a”  for  “accept”)  was  used  to  terminate  the  current
adjustment.  Upon this  response the screen was blanked,
and 1s later a new pair of stimulus patterns was shown. If
a perfect salience match could not be achieved, subjects
were asked to enter the best possible adjustment. During
the  matches,  subjects  were  asked  to  shift  their  gaze
between  the  targets.  All  stimulus  patterns  were  shown
continuously  until  the  subject  terminated  the  trial,  and
there was no time pressure to finish adjustments within a
given time. 

Test series

For every task, a large number of individual test series had
been designed, as will be described below. Each test series
included different stimulus combinations, which were (in
random sequence) repeatedly presented during a run. Most
test  series  were  repeated  once  or  twice  to  reduce  the
standard error of the mean (s.e.m.). 

The  entire  testing  program  was  performed,  in  an
intermingled  sequence,  on  both  the  dense and  the  wide
blob raster configurations. Some test series were tested in
only one or the other configuration, as indicated below. All
measurements  were  made  in  two-hour  sessions,  during
which subjects could pause whenever they wanted.

Subjects

Altogether  six  observers  (3  male,  3  female)  served  as
subjects in the various experiments of the study. The main
experiments  were  performed  by  two  (female)  students,
both  22  years  at  the  beginning  of  the  project,  and  the
author, then 56 years. Later experiments were run by the
remaining  subjects  (27-34  years)  and  the  author.  All
subjects had normal or corrected-to-normal visual acuity
and, except for the author, were naive as to the aim of the
study.

Data Analysis

After each trial, the final computer values of background,
distractors  and  target  settings  were  stored  and,  for
analysis,  transformed  into  luminance  values  taking  into
account  small  stray-light  effects  from  medium  or  high
background luminance, as measured on the screen (<2%;
see  Nothdurft,  2015).  Each  stimulus  pattern  was
represented  by  three  luminance  measures,  background
luminance,  bg,  distractor  luminance,  dis,  and  target
luminance, tg. All computations below are based on these
data triplets, one for the reference pattern and one for the
test pattern.

Computational Predictions

In order to evaluate the validity of certain algorithms for
salience  computation,  experimental  data  were  compared
with  a  number  of  predictions  from  various  presumed
salience algorithms (Table 11). 

For example, if target salience,  sal, were simply based
on the Michelson contrast of  targets  and distractors,  we
postulate 

   (Michelson)    
dis+tg

|distg|
sal


~  , or    

dis+tg

|distg|
k=sal


   ,

with a scaling factor, k. For equal salience matches,

   (1)      testreference sal=sal  ,

we can then write

   (1a)    
testtest

testtest

referencereference

referencereference

dis+tg

|distg|
k=

dis+tg

|distg|
k





  ,

1  All Tables are given at the end of the paper to facilitate access throughout
the text. 
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which can be solved for tgtest without needing to specify k,

   (2)      reference
reference

test
test tg

dis

dis
=tg   .

From  the  preset  luminance  values  in  each  stimulus
pattern  we can  thus  predict  the  luminance  of  an  equal-
salient test target if salience were related to the Michelson
contrast.  Note,  however,  that  equation  (2)  is  not
necessarily  the  solution  of  only  one  algorithm.  For
example,  the  assumption  that  salience  were  instead
encoded by the Weber contrast of targets and distractors,

   (Weber)   
dis

|distg|
sal


~  , or    

dis

|distg|
k=sal

   ,

leads  (for  some  patterns)  to  the  same  prediction  (2).
Conclusions  from these predictions must  thus be drawn
with care.

For  each  measurement,  presumed  test  target  settings
were  computed  for  a  large  variety of  algorithms.  These
predictions  were  used  in  two  ways.  First,  for  each  test
series  the  mean  squared  deviation  (MSD)  of  predicted
from measured data  was  computed;  small  MSDs would
indicate a good fit of the predicted to the measured data in
a series. Second, predicted target settings were plotted and
compared with the measured data; the quality of these fits
and,  in  particular,  of  local  deviations  were  visually
inspected.

Note that the MSD values used here have the physical
unit  (cd/m2)2 = cd2/m4,  since  they  are  computed  as  the
squared mean deviation of  luminance data  (measured in
cd/m2). However, to keep the nomenclature and discussion
short  and  readable,  this  unit  will  frequently be  left  out
when MSD values are compared.

RESULTS

General Overview

Hints for reading: Read it. This overview is short – and
tells you what the main sections are about.

Observations are presented in three parts. Section A gives
an overview of the experimental results obtained with the
equal-salience matching task,  when  similar targets were
compared, that is, when both targets were either BRIGHT
or DARK and both were presented in either maximum or
minimum target  configuration.  These data  are  compared

with predictions from simple models. – Section B expands
these  experiments  to  matches  of  different  items,  like
matches of minimum and maximum targets or matches of
BRIGHT versus  DARK targets.  In  some  of  these  tests,
matches were performed with a fixed test pattern setting,
which  served  as  a  constant  meter  and  thus  allowed  to
measure  and  compare  the  relative  salience  of  various
target  conditions.  –  The  failure  to  find  a  simple  unique
model  that  could  explain  all  experimental  data  led  to
proof, in  section C,  a much larger variety of algorithms
that might underlie salience computation. Predictions from
these models are compared with the data. – Discussions in
these sections address various aspects of data acquisition,
of salience matches, and of conclusions to be drawn from
these experiments. Each section is closed with a summary
of  the  main  findings  and  with  conclusions  from  this
section.  Some  sections,  and  in  particular  the  General
Discussion  at  the  end,  provide  demonstrations  of  the
observed  effects,  which  however  need  an  appropriate
printer to be seen (see Appendix).

Note that  although the  main  sections  are  distinct  and
separated, there are many links between. Thus, a thorough
computational analysis of the data is given in section C,
but a first analysis of a few algorithms needs already to be
made when the experimental data are presented, that is, in
sections A and B. Frequent references are made to Table 1,
which lists all major algorithms tested in the study, and to
Tables 2-4, which list the best algorithms (smallest MSD
values) for the various test series. 

A. SALIENCE MATCHES OF SIMILAR TARGETS

Hints  for  reading: This  section  reports  experimental
data, when similar targets (dark or bright) in different
luminance  settings  (background,  distractors)  are
matched  for  salience.  Experiments  1-4  report  the
general  effects  of  luminance  variations  of  various
parameters. Experiments 5 and 6 address details of
those  matches  in  higher  resolution;  you  may  skip
these for an overview.

In all experiments, subjects saw two patterns side-by-side
and  had  to  adjust  the  target  in  one  pattern  (the  “test”
pattern) so that it appeared equally salient to the target in
the other pattern (the “reference” pattern). The various test
series, which for the clarity of presentation are ordered and
sorted  into  different  “Experiments”,  were  in  fact
intermixed and tested in interleaved sequences, not in the
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sequential  order  they  are  presented  here.  Experiments
were generally performed by three subjects.

Experiment 1: 
Constant distractor luminance on different 
backgrounds (Test series block K)

Stimuli

The test series  block  K included 13 different  test  series
each with 7–12 test conditions. Seven of these series were
performed by all  three subjects on both wide and dense
blob  configurations.  The  remaining  test  series  were
performed either by fewer subjects or only on one raster
configuration.  Within  each  test  series,  background  and
distractor  luminance  was  held  constant,  and  only target
luminance  was  varied  between  the  trials  (cf.  Fig. 3).
Across  test  series,  however,  there  were  systematic
variations  of  background  luminance  between  reference
and  test  patterns.  Distractor  luminance  was  always  the
same in the two patterns (with small deviations from stray
light when backgrounds differed strongly, as shown in the
plots).

Results and Discussion

Matching  results  from test  series  block  K are  shown in
Figure 3.  Corresponding  luminance  settings  in  the
reference  patterns  (black  symbols)  and  test  patterns
(colored symbols) are plotted side-by-side and in such a
way that luminance variations of the reference target fall
upon straight lines; the same position shifts are used for
plotting  test  target  luminance.  Matches  from  the  three
subjects were very similar, therefore, only the means and
standard errors of the means,  s.e.m., are shown. The blue
and  red  data  points  refer  to  matches  obtained  with  the
wide and the dense blob raster, respectively. Series  K11,
K22,  and  K43 displayed  dark  stimuli  (backgrounds
brighter than targets and distractors), series K25, K26, and
K47 bright stimuli (backgrounds darker than targets and
distractors).  Most  test  series  included  targets  in  both
maximum  and  minimum  configurations;  targets  with
luminance  settings  between  background  and  distractors
are minimum targets.

Figure 3  illustrates  several  major  findings  of
Experiment 1. One is that even for continuous luminance

variations  of  the  reference  target  (indicated  by  the
superimposed  gray  lines)  luminance  of  the  salience-
matched  test  targets  might  have  varied  discontinuously.
That  is,  the  long  straight  (gray)  lines  through reference
target settings are not accompanied by similar long straight
lines through the test  target  settings,  but  the latter  lines
may  instead  be  bent  or  curved.  With  DARK  targets
(Fig. 3a), for example, the slopes of luminance variation of
reference  targets  were  reproduced  in  the  lower  curve
sections  (K11 and  K22) but  differed in  the upper  curve
sections  (K11,  K22,  and  entire  test  series  K43) where
slopes looked as being scaled to the span of background
and  distractor  luminance  (thin  black  lines).  The  same
response characteristics were seen in other test series of
block K.

Note that the only difference between reference and test
patterns in series block  K was the different backgrounds.
From a first look at these data we might thus hypothesize
that  the  salience  of  DARK  targets  is  not  affected  by
background  luminance  when  targets  are  darker  than
distractors  (maximum  targets),  but  is  scaled  to  the
luminance  span  of  background  and  distractors  when
targets  become  brighter  than  distractors  (minimum
targets). Since this latter case of normalization was, in the
present study, initially seen for targets in minimum target
configurations, it was named the “salmin” prediction (cf.
algorithm  5  in  Table 1).  Only  with  the  low  distractor
luminance in K43 were there notable deviations from that
prediction. 

The  situation  was  different  for  BRIGHT  targets
(Fig. 3b).  Here,  the  slopes  of  reference  targets  were
generally not reproduced. Instead, slopes above and below
the distractor level now look similar, although different for
different backgrounds and distractors. The first impression
is that slopes are roughly scaled to the span of background
and distractor luminance, as in the salmin prediction (thin
black  lines),  but  now  for  targets  in  minimum  and
maximum configurations  (targets  below  and  above  the
distractor settings, respectively). Note however, that there
are pronounced deviations from the  salmin predictions in
some cases (e.g.,  K26, K47). In particular, the matches of
maximum  targets  fall  between the  predictions  from
constant-addition (gray) and the salmin algorithm (black).
Also the matches of minimum targets in these two series
strongly deviate from any of the straight-line predictions.

A second major observation in Figure 3 (beside the just
mentioned deviations in test series  K26 and  K47) is that
luminance  settings  in  equal  salience  matches  did  not
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strongly vary with item density but were similar for the
two raster widths tested (red and blue data points). Clearly

different matches were obtained with BRIGHT targets in
the  minimum  target  configuration  when  the  luminance
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Figure  3.  Luminance  settings  of
salience-matched target conditions in
Experiment  1  (test  series  block  K).
Subjects  saw two  patterns  (reference
and test) and adjusted the test target so
that  it  was  equally  salient  to  the
reference target.  Symbols indicate the
luminance settings of background (♦),
distractors  (○),  and  salience-matched
targets  (●);  reference  pattern  settings
are  indicated  by  black,  test  pattern
settings  by  colored  symbols.  Curves
show  six  examples  of  test  series  in
Experiment 1  (K11-K47);  the  various
reference  and  test  pattern  conditions
are plotted side by side.  a. Test series
with DARK targets and distractors on
brighter  backgrounds.  b. Test  series
with  BRIGHT targets  and  distractors
on darker backgrounds. In each series,
data  points  are  shifted  along  the
abscissa  so  that  luminance  variations
of  the  reference  targets  fall  upon
straight lines; the same shifts are used
in  the  plots  of  corresponding  test
pattern data. Graphs show means and
s.e.m. (if larger than symbols) of three
subjects.  Background  and  distractor
luminance settings were constant over
each series and only target luminance
was  varied.  In  test  series  block  K,
reference  and  test  distractors  were
identical;  small  differences  (e.g.  in
K43) are  due  to  stray-light  from the
different  backgrounds.  Experiments
were  performed  on  wide  and  dense
blob arrangements (blue and red data
points, respectively). Straight gray and
black  lines  for  test  patterns  indicate
various predictions of the experimental
data; for reference patterns they simply
confirm the horizontal arrangement to
form  straight  lines.  Predictions  were
based  on  the  constant-addition
principle  (“add”),  which in these test
series  was  identical  with  predictions
based  on  the  constant-ratio  principle
(“ratio”),  and  on  the  ”salmin”
algorithm (cf.  Table 1).  Note  that  all

but one test series include matches of targets in maximum and minimum configuration (data points above and below distractor level). For
DARK targets, the matches in these conditions follow different slopes; for BRIGHT targets , slopes are more similar. Numbered labels mark
deviations which were further studied in other experiments.
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span  of  background and distractors  was  relatively small
(as in test series K26 and K47).

Underlying algorithms

To evaluate algorithms that could explain these data, the
matching  results  were  compared  with  predictions  from
various  assumptive  salience  computations  (cf.  Table 1).
While a thorough analysis of the various algorithms will
be made in section C, some computations should already
here  be  referred  to,  mainly  to  describe  the  general
matching performances and to illustrate the best fits of the
data. To illustrate the interdependence of target variations,
I choose the scatter plot presentation in Figure 4.

The similar slopes of salience-matched  DARK targets
in maximum condition (lower curve sections in Fig. 3a)
suggest  tgtest=tgreference, which is the prediction based on
algorithm 1  and,  under  the  special  conditions  of
Experiment 1  (distest=disreference),  also  of  algorithms 2

(Weber  Contrast)  and  3  (Michelson  Contrast);  see
equation  (2).  To  distinguish  between  these  algorithms
further variations of stimulus conditions are needed. The
fits by these algorithms are rather good and fall, for the
curve  sections  representing  maximum targets,  upon  the
dotted identity lines in Figure 4a.

For  DARK targets  in  minimum condition,  the  salmin
algorithm 5 (thin black lines in Fig. 3a) makes predictions
close to the data (except for test series K43) but similarly
good and partly even better predictions are obtained from
other algorithms of Table 1. Figure 4a shows two fits (gray
lines) for the DARK minimum targets in test series block
K;  predictions  from  the  salmin algorithm  5  (left-hand
graph  in  Fig. 4a)  and  slightly  better  predictions  from
algorithm 10;  the  difference  is  obvious  with  test  series
K43. 

The  generally  good fits  in  Figure  4a  are  reflected  in
small  mean  squared  deviations  (MSD)  of  the  predicted
from  measured  data  (Table  2).  For  DARK  maximum
targets (Table 2, cell A1), MSD values were smallest for
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Figure 4.  Scatter plots of equal-salient target-target variations in Experiment 1.  Re-plot of the data in Fig.3 and an additional test series
(K21) performed by the same three subjects.  a. DARK targets;  b. BRIGHT targets. Graphs show the luminance settings of equal-salient
targets; matches from wide (open circles) and dense blob configurations (filled circles) are superimposed. Colors now distinguish data from
different test series. Reference targets (abscissa) are matched by different test targets (ordinate) depending on the background luminance
settings of each pattern (not shown); distractor settings were identical in these test series. Gray lines in each graph show the fits by the
algorithms listed above each graph. For DARK targets (a), matches of maximum targets fall upon the identity line, test target = reference
target (dotted), as predicted by algorithms 1-3 (cf. Table 1); matches of minimum targets in (lower right-hand part of the graphs) deviate
from this prediction but are closely predicted by algorithm 5 (left-hand graph) and algorithm 10 (middle graph). For BRIGHT targets (b),
matches were best predicted by algorithm 5, but fits of predictions were considerably better for minimum targets (upper left-hand part of the
graph) than for maximum targets (lower right-hand part).
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algorithms 13, 2 (equivalent to 2a, 2b, and 3), and 1, and
were generally larger for all other algorithms tested. For
DARK minimum targets (Table 2, C1), MSD values were
small for a number of algorithms including the two plotted
in Figure 4a. (MSD values in Table 2 are based on all data
from a given block of test series, not just those selected for
illustration.)

For  BRIGHT targets (Fig. 4b), best fits were obtained
with the  salmin algorithm 5 (Fig. 4b) and with algorithm
8b, both for maximum and minimum targets; the two fits
were nearly identical for test series block  K (Table 2, E1
and G1).  Note  however,  that  the  best  fits  for  BRIGHT
maximum targets were generally not as good as the best
fits for DARK maximum targets; MSD values are larger
(cf. Table 2, E1 vs. A1) and the (best) gray-line predictions
show  larger  deviations  from the  data  (Fig. 4b),  as  was
already seen in Figure 3b (test series K26 and K47). 

Experiments 2 and 3: 
Different distractors on constant background 
(Test series blocks L, LX, and O)

In  test  series  block  K, distractors  in  reference  and  test
patterns always had the same luminance. This restriction
was avoided in test series blocks L and O, which were split
to display only maximum or minimum targets.

Stimuli

In blocks L and O altogether 49 test series were run each
with  up  to  9  test  conditions;  twenty-two  of  them were
performed by all three subjects. In every test series, one
constant reference pattern was compared with several test
patterns  at  various  distractor  settings  (cf.  Fig. 5);
background luminance was held constant and identical in
the two patterns. Most test series were run with wide and

dense  blob  configurations.  However,  salience  matches
with bright targets in sparse arrangements were generally
more  difficult  than  matches  with  dark  targets  and  were
hence  not  tested  with  all  subjects  in  all  conditions.  To
overcome the  difficulties  that  seemed to  occur  with  the
adjustment  of  particularly  bright  targets  (cf.  Nothdurft,
2015), an additional test series block  LX was created, in
which  test  targets  were  dimmer  than  reference  targets.
Block LX included seven test series that were only tested
in dense blob configurations. 

Results and Discussion

Maximum targets: Test series blocks L and LX)
(Experiment 2)

Figure 5 shows various examples of test series in blocks L
and LX. Again, the results for DARK and BRIGHT targets
differed systematically and, if tested, did not reveal strong
differences between salience matches in dense and wide
blob arrays. 

DARK  targets. Several  straight-forward  expectations
(Nothdurft, 2015) are plotted into the data. One is based
on the constant-addition principle (“add”; continuous gray
lines),  which  assumes  that  targets  have  equal  salience
when  they  display  the  same  luminance  difference  to
distractors  (algorithm  1  in  Table  1).  This  principle
provides  one  possible  explanation  for  the  data  obtained
with  DARK  maximum  targets  in  Experiment 1,  where
distractor  luminance  was  held  constant  (Fig. 3a).  From
Figure 5, however, it is obvious that this principle cannot
explain  the  experimental  data  of  all  test  series  when
distractor luminance is varied. In particular, targets close
to the monitor limit were adjusted brighter than predicted
(L12, L22). The second expectation plotted in Figure 5 is
based on the constant-ratio principle (“ratio”; dashed gray
lines);  it  assumes  that  the  ratio  of  target  and  distractor
luminance must be constant to let targets appear equally
salient  (algorithm  2  in  Table  1;  Weber  contrast).  This
principle,  too,  can  explain  the  matches  of  DARK
maximum  targets  in  Experiment 1.  In  Figure 5a,  the
constant-ratio principle predicts the experimental data in
some curve sections (L22, L51) but  fails  in  others.  The
third prediction is from the salmin algorithm 5 (black thin
lines);  it  clearly  misses  the  data  for  DARK  targets  in
Figure 5.
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Conclusions from Experiment     1:

Target type Equal salience related to 

DARK maximum constant-addition (alg1)      
DARK minimum salmin (alg5) and alg8b
BRIGHT maximum salmin (alg5); poor fits
BRIGHT minimum salmin (alg5)

Notable deviations of data from predictions with 
minimum targets (see Experiment 5)
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BRIGHT  targets. The  corresponding  fits  for  BRIGHT
targets  are  shown  in  Figure 5b  and c.  Since  matches
sometimes varied considerably (cf. large s.e.m.) when test
distractors  were  brighter  than  reference  distractors  and
thus the targets to be adjusted were the brightest items in

the  display  (cf.  Anderson,  Singh,  &  Meng,  2006;
Nothdurft, 2015), an additional test block series  LX was
created  in  which  test  distractors  were  dimmer  than
reference  distractors  and  test  targets  did  not  have  to
exceed all other items’ luminance. 
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Figure  5.  Luminance  settings  of
salience-matched  target  conditions
in  Experiment  2  (test  series  block  L;
all  targets  in  maximum  configuration).
a. DARK targets;  b, c. BRIGHT targets;
symbols  and  data  presentation  as  in
Fig.3.  In  these  test  series,  reference
patterns  (black  symbols)  were  held
constant,  and  test  distractor  and  target
settings  were  varied;  backgrounds  were
identical  in  the  two  patterns.  Straight
gray  and  black  lines  show  various
predictions of the experimental data. Of
the predictions shown, the constant-ratio
prediction fitted all data best. Thin dotted
lines  indicate  the  upper  and  lower
luminance  settings  of  the  monitor.  Test
series  L (b) and  LX (c) differed  in  the
relative brightness of the test targets to be
adjusted.  In  (b) they  could  be  the
brightest  items  in  the  scene  which  has
sometimes  led  to  difficulties  in
adjustments  (not  in  the  series  shown
here). In (c) that was never the case.
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In  both  test  series  blocks,  the  constant-ratio  principle
(dashed gray lines)  fitted  the  data  much better  than the
constant-addition  principle  (continuous  gray  lines);  the
difference is particularly obvious with data from test series
block  LX (Fig. 5c). The third class of curves, predictions
from the  salmin algorithm 5 (thin black lines), often fell
close to the data but generally not as close as predictions
from the constant-ratio principle. 

Underlying algorithms

DARK targets. The limited validity of certain algorithms to
predict the data of Experiment 2 is also seen in the scatter
plots of Figure 6a. Since reference patterns were constant
in  each  test  series  and  backgrounds  were  identical  in
reference and test patterns, the individual matches (circles)

together with the reference condition of a series (squares)
should  show a  systematic  variation  of  target  luminance
with  various  distractors.  The  two  left-hand  graphs
replicate  two  predictions  already  shown  in  Figure 5a;
constant  addition  (gray  lines  in  the  left-hand  graph  of
Fig. 6a) and constant ratio (gray lines in the middle graph).
None  of  these  predictions  fits  the  entire  data  set.  This
excludes Weber and Michelson Contrast (algorithms 2 and
3)  as  salience  algorithms  for  DARK  maximum  targets
when distractors are not identical. To search for better fits,
several algorithms from Table 1 were tested (section C).
The best fit was obtained with algorithm 8 (Fig. 6a, right-
hand graph), the normalized Michelson Contrast (Singh &
Anderson, 2006).

The different quality of the fits is reflected in the MSD
values  of  the  three  predictions.  The  smallest  MSD  is
obtained for algorithm 8, whereas algorithms 13 and 2 (the
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Figure 6.  Scatter plots of equal-salient target-distractor
conditions  in  Experiment  2  (targets  in  maximum
configuration).  a. DARK  targets;  b. BRIGHT  targets.
Reference conditions (squares) are shown together with
equal-salient  test  conditions  obtained  from matches  in
dense  (filled  circles)  or  sparse  blob  patterns  (open
circles).  Colors  distinguish  test  series  (and  different
reference conditions).  The different graphs in  (a) or  (b)
show the  same  experimental  data  fitted  by predictions
from various algorithms as indicated above each graph.
For  DARK targets  (a),  constant-addition  and  constant-
ratio can only explain part of the data; predictions from
algorithm 8 produce better fits. For BRIGHT targets  (b),
best  fits are  obtained with the constant-ratio  algorithm.
Note that for all algorithms quite a few predictions could
not  be reached in experiment  due  to  limitations of the
monitor (dotted lines).
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best  ones  for  test  series  block  K)  generated  larger
deviations (Table 2, A2). Algorithm 1 is not listed among
the  five  best  ones  because  too  many  predictions  fell
outside the monitor range (see section C).

BRIGHT targets. While  Weber  and  Michelson  Contrast
(algorithms 2 and 3) could not predict the equal-salience
settings  of  DARK  targets,  they  better  predicted  the
matches of BRIGHT targets in Figure 6b. Note however
that  not  all  test  series  were  adequately  fitted  by  these
algorithms.  For  some  series,  in  particular  series  L17,
predictions  fell  far  off  the  data  points.  This  was  much
better with test series block LX (right-hand graph Fig. 6b)
of which almost all data points lie close to the predicted
curves. The main difference between these two test series
was the brightness ranking of test targets. In some patterns
of series L, the test target was the brightest item and had to
be adjusted to values above all other luminance settings in
the  stimulus.  In  test  series  LX,  the  brightest  item  was
always  the  reference  target,  which  remained  constant
during adjustments. Obviously, adjustments within a given
luminance  range  could  be  better  performed  and  led  to
more reliable results than adjustments outside and above
that range (Anderson, Singh, & Meng, 2006; Nothdurft,
2015), for example, in test series L17 and LX51 (Fig. 6b).

In spite of these differences it may be surprising that the
MSD  values  from  test  series  L and  LX  are  so  similar
(Table 2, E2). But this is misleading. The few data points
in the left-hand graph (test series  L17) that lie far off the
predictions were not  included in the MSD computation,
since constant-ratio predictions fell  outside the available
monitor  range  (for  details  of  which  data  points  were
included and  which  not,  see  section  C).  The  remaining
data of test series block L are closely fitted by predictions
from algorithm 2, as are the data from test series block LX.
It  is  interesting to  note  that  also the  salmin algorithm 5
made good predictions of series L (MSD value 19.1) but is
not listed in Table 2, E2 because too many predictions fell
outside the monitor range.

Minimum targets: Test series block O
(Experiment 3)

Examples of salience matches with test series block O are
shown in Figure 7. All patterns in these series presented
targets  in  the  minimum configuration.  Like  in  series  L,
reference patterns were held constant within a series, and
in the test patterns only distractor  and,  of  course, target
luminance settings were varied. Background settings were
identical in reference and test patterns.

For  DARK  targets (Fig. 7a),  neither  the  constant-
addition  (continuous  gray  lines)  nor  the  constant-ratio
principle (dashed gray lines) can predict the entire data set,
although  predictions  partly  follow  the  data.  This  is
particularly  obvious  with  matches  in  wide  blob
configurations (blue symbols) of test series O12. The data
follow  the  salmin prediction  when  the  test  target  was
brighter than the reference target, but follow more closely
the  constant-addition scheme  when  the  test  target  was
darker than the reference target. Similar differences can be
seen  in  the  other  tests  series  of  block  O.  For  BRIGHT
targets (Fig. 7b),  all  data  are  closely met by the  salmin
prediction (algorithm 5; thin black lines), but differences
between algorithms are not very pronounced in some test
series (e.g., test series O48 and O69). 

In computational predictions of the  DARK target data,
algorithm 10 produced the smallest MSD values (Table 2,
C2) and the visually best fit of the data in the scatter plots
of Figure 8a (left-hand graph). The suspicion that the data
might,  in  fact,  be  fitted  by  two  algorithms,  the  salmin
prediction  (when  the  test  target  is  brighter  than  the
reference target) and the constant-addition principle (when
the test target is darker than the reference target), is shown
in the right-hand graph. But although these bipartite fits
are  sometimes  close  to  the  data,  there  are  notable
deviations (e.g., test series O11) which do not occur in the
fits from algorithm 10. 

For BRIGHT targets, several algorithms produced rather
good predictions of the data (Table 2, G2). Nearly perfect
fits for wide and dense blob configurations were obtained
with the salmin algorithm 5 plotted in Figure 8b. 
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Conclusions from Experiment     2:

Target type Equal salience best related to 

DARK maximum normalized Michelson (alg8)  
BRIGHT maximum salmin (alg5)

Some algorithms had to be ignored because too many
predictions fell outside the available monitor range. –
Problems with very bright targets.

Conclusions from Experiment     3:

Target type Equal salience best related to 

DARK minimum algorithm 10 or bipartite fits
(but see Experiment 6)

BRIGHT minimum salmin (alg5)
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Experiment 4: 
The effect of background variations 
(Test series block F)

We have seen in Experiment 1 that background luminance
could strongly affect the salience of certain targets but had

almost  no  effect  on  the  salience  of  DARK  maximum
targets  (Fig. 3).  To  consolidate  this  observation,  an
additional  block  of  test  series  was  designed,  in  which
reference  and  test  patterns  were  identical  and  only  the
background in the test  patterns was varied between test
conditions.  If  background  luminance  would  affect
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Figure  7.  Luminance  settings  of
salience-matched  target  conditions
in Experiment 3 (test series block O;
targets  in  minimum configuration).
a. Examples  of  test  series  with
DARK  targets;  b. examples  with
BRIGHT targets;  symbols  and data
presentation  as  in  Fig. 5.  With
DARK  targets  (a),  some  curves
appear  to  be  split;  the  different
branches follow different algorithms
(“bipartite  fits”).  With  BRIGHT
targets, best fits were obtained with
the salmin algorithm.
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salience,  test  target  settings  should  vary.  If  background
luminance  is  irrelevant  for  salience  estimates,  target
adjustments should be identical between test conditions. 

Stimuli

All  major target  conditions tested  so  far  (DARK and
BRIGHT  targets  in  maximum  and  minimum
configuration)  were  studied  in  altogether  ten  test  series
(Fig. 9).  In  each  series,  the  luminance  settings  of  the
reference  pattern  and  of  the  test  distractors  remained
constant; only the test pattern background was varied. In
every presentation,  the test  target  had to  be adjusted to
match  the  salience  of  the  reference  target,  as  in  the
previous experiments. Three subjects performed the tests

with  dense  blob  configurations,  one  subject  in  addition
with wide blob configurations.

Results and Discussion

Since reference patterns and test  patterns were identical
except  for  the  different  background  settings  in  the  test
patterns,  the  variations  in  salience-matched  test  target
luminance  should  directly  reflect  the  influence  of
background  luminance  on  target  salience.  For  DARK
targets  in  maximum  configuration this  influence  was
indeed  very small  (Fig. 9a,  red  and  dark-blue  symbols).
Only when background luminance closely approached that
of  distractors  so  that  their  visibility  was  strongly
diminished,  subjects  tended  to  diminish  also  the  target
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Figure  8.  Scatter  plots  of  equal-salient
target-distractor conditions in Experiment 3
(targets in minimum configuration).  Symbols
and  presentation  as  in  Fig. 6.  a. DARK
targets;  the  same  data  are  fitted  by
algorithm 10  (left-hand  graph)  and,  in
“bipartite fits”, by algorithms 1 and 5 (right-
hand graph). The latter fits do not follow test
series  O11.  b. BRIGHT targets. All data are
closely predicted by algorithm 5.

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           16

contrast to background and thus effectively the salience-
matched  target-to-distractor  contrast.  This  confirms  and
extents the finding of Experiment 1 that  the salience of
DARK targets in maximum configuration mainly depends

on the target-to-distractor  contrast,  unless the distractors
themselves are barely discriminable from background. An
exception was seen with medium distractor levels in wide
blob  configurations  (test  series  F2, blue  circles).  Here
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Figure 9. The influence of background luminance on equal-salience matches (Experiment 4, test series block F).  a.-d. Different test series
for DARK (a, b) and BRIGHT (c, d) targets in maximum (a, c) and minimum configuration (b, d); symbols and data presentation as before.
In each test series, a fixed reference pattern was matched by test patterns with same distractors but different backgrounds. If background
settings were irrelevant, matched test targets should all fall upon the line of the (constant) reference target. Deviations from this line directly
indicate background effects. Gray superimposed lines show predictions from the algorithms (cf. Table 1) listed above the plots of each target
group. Best predictions for DARK maximum targets were from algorithms 1, 2, and 13, which all predict straight lines superimposed on the
“targets” lines (not shown). In wide blob arrangements of test series  F2, different matches were obtained when target contrast (light blue
circles), not global salience (dark blue circles) was matched. This performance was fitted by algorithm C.
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different matches were found depending on which aspect
of  the stimulus was paid attention to.  When test  targets
were matched for similar contrast to distractors (light blue
data  points),  they  were  adjusted  brighter  than  when
matched for global similarity in salience (dark blue data
points).  No  such  difference  was  found  in  dense blob
configurations.  The  deviations  were  unexpected  and
further explored in a spontaneous control test with short
stimulus  presentations  (500 ms).  Only  the  settings  with
dark  blue  symbols  in  Figure 9a  let  targets  appear  about
equal-salient to the reference targets (black). When targets
with the light-blue luminance settings were compared in
such a test, the reference targets were generally considered
to be more salient.

 In all other stimulus conditions (Fig. 9b-d) variations of
background  luminance  had  a  much  stronger  effect  on
target salience, and in many tests target luminance had to
be changed considerably to make the targets on different
backgrounds  equal-salient.  Performance  was  generally
quite similar in wide and dense blob patterns.

Underlying algorithms

Except  for  BRIGHT  targets,  in  particular  those  in
maximum configuration, all experimental data are closely
predicted by the algorithms listed above each graph (gray
lines  in  Fig. 9).  DARK  maximum  targets are,  as  in
Experiment 1, perfectly fit by algorithms 1, 2 (=3), and 13
(MSD values ≤ 2.02 in Table 2, A3), which predict no or
only small variations with background. These predictions
fall upon the horizontal line “targets” and are not plotted
in Fig. 9a. Contrast-based matches (light-blue data points
in F2) are closely predicted by algorithms A and C (MSD
values  1.6  and  3.1,  respectively;  the  values  for  these
special  matches  are  not  listed  in  Table 2,  A3);  the
predictions  from  algorithm C  are  shown  in  Figure 9a.
DARK targets in minimum configuration (Fig. 9b) are best
predicted  by  algorithm  A  (Table 2,  C3).  The  fits  to
BRIGHT targets are generally worse. Among the best fits
(smallest  MSD  values)  for  BRIGHT  maximum  targets
(Table 2, E3) are predictions from algorithm 8b (plotted in
Figure 9c) and from the salmin  algorithm 5; however, the
deviations from the experimental data are quite obvious (a
better  fit  will  be  presented  in  section  C).  For  BRIGHT
minimum targets (Table 2, G3), the best fit was obtained

2  Note that all MSD values in this paper have the physical unit (cd/m2)2, 
which is left out for the brevity of presentation. See General Methods.

with algorithm 8 (plotted in Fig. 9d); it was quite good for
matches in wide but not dense configurations.

Experiment 5: 
Variations in minimum target matches 
(Test series block R)

While  salience  matches  of  targets  in  minimum
configuration by and large followed the salmin predictions
(cf.  series  K11,  K22, and  K25 in  Fig. 3),  there  were
sometimes strong deviations from the straight prediction
curves  when  test  targets  had  to  be  adjusted  in  a  rather
small distractor-background window (cf. series K43, K26,
and  K47 in  Fig. 3).  These  deviations  appeared  to  be
particular  strong  in  patterns  with  wide  blob  spacing.
Experiment 5 was designed to explore these variations in
more detail.

Stimuli

The experiment was added at a late stage of the project,
after two subjects of the main study had left. They were
replaced  by three  new subjects  (two  male,  one  female)
who had not been involved in the other experiments of the
study. The author has served as an additional observer in
all experiments. 

Experiment 5  included  four  test  series  with  minimum
targets, two with DARK and two with BRIGHT targets.
All matches were performed on patterns with  wide blob
arrangements. Each test series included 19 test conditions
that were presented twice in a pseudo-random sequence.
Test  series  were  designed  to  study  the  transform  of
minimum  target  variations  in  a  large  background-to-
distractor  span,  into  equal-salient  minimum  target
variations  in  much  smaller  background-to-distractor
luminance  spans  (Fig. 10).  Within  a  series,  background
and  distractor  luminance  settings  were  held  constant
(different for reference and test patterns) and only target
luminance  was  varied.  Across  the  series,  two  different
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Conclusions from Experiment     4:

Does salience vary with background luminance? 

DARK maximum (almost) no
DARK minimum yes
BRIGHT maximum yes
BRIGHT minimum yes
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background and distractor  settings were tested.  In every
single trial, the test target had to be adjusted to match the
salience  of  the  reference  target,  as  in  all  previous
experiments.

 
Results and Discussion

The results are  best  visualized in  scatter  plots of equal-
salient  reference  and  test  targets  (Fig. 10);  the  constant
luminance  settings  of  background  and  distractors  are
indicated by straight lines. In test series  R1  and  R4, the
backgrounds in the two patterns (continuous lines) were
identical  and  distractors  (dashed  lines)  differed;  in  test
series  R2  and  R3, distractors  were  identical  and
backgrounds differed. In all test series, the luminance span
of  backgrounds  to  distractors  was  much  larger  in  the
reference  than  in  the  test  patterns.  It  was  the  aim  of
Experiment 5  to  study if  and  how these  different  spans
affected the matches of equal-salient targets.

If salience were strictly scaled to the luminance span of
background and distractors, as originally assumed, all data

points should fall upon the lines predicted by the  salmin
algorithm 5 (thin black lines). But this was not the case.
Instead, equal-salience matches let targets often shift away
from these  predictions.  The  deviations  mainly  occurred
when  target  luminance  was  either  close  to  distractor
luminance (near the corners made up by dashed lines) or
close to  the backgrounds (near  the corners  made up  by
continuous lines), and are quite different in the four test
series. In all corners, however, luminance variations of the
test  target  (embedded  in  the  smaller  luminance  span)
tended to exceed the luminance variations expected from
the salmin algorithm. To make the test targets equal-salient
to the reference targets, subjects had slightly increased the
luminance difference to either background or distractors.
Farer away, in the middle of most curves, matches cross
the salmin predictions.

It is interesting to compare these deviations with other
predictions.  For  targets  very  similar  to  the  background
(corners  of  continuous  lines),  all  matches  follow  the
constant-ratio principle (gray dashed lines). This was not
the case for targets similar to distractors (corners of dashed
lines). Constant-ratio predictions are not shown at all these
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Figure  10.  Deviations  from
salmin predictions for minimum
targets (Experiment 5, test series
block  R). All  tests  were
performed  on  wide  blob
arrangements.  Graphs  plot
luminance  variations  of  equal-
salient  targets  in  test  series  R1-
R4.  In  each  series,  background
and  distractor  settings  were
constant  (indicated  by  straight
lines;  backgrounds  continuous,
distractors  dashed).  For  small
distractor-to-background  differ-
ences,  which  were  tested  here,
equal-salient target matches were
not  linearly  related  to  the
luminance  span  of  background
and  distractors  (as  predicted  by
the  salmin algorithm; thin black
lines)  but  showed  strong  local
deviations  towards  other  com-

putational  rules  (gray lines).  Particularly important  was the constant-ratio  principle  (dashed gray lines)  for  small  target-to-background
differences (data points near the corners formed by background luminance settings) but not for target-to-distractor differences (data points
near  the  corners  of  distractor  settings).  Of  the  other  simple  predictions  tested  here  only the  constant  addition  of  target-to-distractor
differences was partly important for DARK targets. For the construction of further predictions note that constant-ratio curves connect the
origin with the points of interest (i.e., background corners for target-to-background differences; distractor corners for target-to-distractor
differences), whereas constant-addition curves run through these points in parallel to the diagonal identity lines,  test target = reference
(dashed gray line in the left-hand graph).
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corners in Figure 10 but can be easily transferred from the
neighboring graphs; they form straight lines between the
corners and the origin.  It  is important to notice that the
curves through equal-background corners (labeled “ratio”)
do  not represent  the  Weber  contrast  of  targets  and
distractors  as  given  in  algorithm 2  of  Table 1,  but  the
Weber  contrast  of  targets  to  background.  The  fits  thus
indicate that equal-salient targets close to background vary
in  proportion  to  the  background  luminance  (Nothdurft,
2015).  The  missing  fits  at  the  opposite  equal-distractor
corners (where curves indeed represent constant target-to-
distractor ratios  as  given  by  algorithm 2  in  Table 1)
simultaneously  indicate  that  algorithm 2,  the  Weber
contrast  of  targets  and  distractors,  cannot  explain  the
salience of targets in minimum configuration. Predictions
from  constant  addition (continuous  gray  lines),  on  the
other hand, did only fit the matching data of DARK targets
similar  to  distractors  (series  R1). For  clarity,  these
predictions are not drawn into all graphs but can again be
easily  constructed;  constant-addition  predictions  are
represented by straight lines parallel to the main diagonals
of the two graphs  (test target = reference target) through
any of  the  given  corners.  For  corners  that  lie  upon the
diagonals  (backgrounds in  R1 and  R4;  distractors  in  R2
and  R3),  constant-addition and constant-ratio predictions
are identical.

While  the  local  deviations  from  salmin and  the
alternative  fits  to  constant-ratio  or  constant-addition
predictions  are  quite  obvious  in  Figure 10,  there  were
individual  variations  between  subjects.  They  mainly
occurred in the middle of the windows (where targets were
similarly different from both background and distractors)
and partly at the dashed lines’ corners (targets similar to
distractors).  Here,  some  subjects  followed  better  than
others the salmin rule, in some test series. Such variations
were,  however,  small  when  targets  were  close  to
background luminance, i.e. near the corners of continuous
lines. Only one of the four subjects (and in only one test
series) did not strictly follow the constant-ratio principle at
this end. 

Altogether,  we  must  thus  restrict  the  previous
conclusion that targets in minimum configuration follow
the  salmin algorithm. This  conclusion is only valid in a
first, global overview. When minimum targets are close to
background and presented in a small luminance window
of background and distractors, they more closely follow
constant-ratio settings of targets to backgrounds. 

Experiment 6: 
Bipartite fits of DARK minimum target matches?

We  have  seen  in  Figure 7a  that  matches  of  a  constant
DARK minimum reference target appeared to follow the
salmin prediction when test distractors were brighter than
reference distractors,  but seemed to follow the constant-
addition  rule  when  test  distractors  were  darker  than
reference distractors. This first impression was only partly
confirmed  in  Figure 8.  Some  test  series  were  indeed
closely predicted by bipartite fits but others were not and
better  predicted  by algorithm 10.  To  further  explore  the
phenomenon, new test series were added to block  O, in
which  the  presumed  switching  from  one  computational
rule to the other was studied, in some series with much
better resolution.

Stimuli

Stimuli were similar to those used for DARK targets in
test series block O (Experiment 3); that is, all targets were
presented in the minimum target configuration, and within
a test series the reference pattern was held constant while
test distractors were varied. The backgrounds of test and
reference patterns were identical.

The additional tests were performed in two steps. First,
a  large  number  of  additional  tests  series  was  explored,
some of  which  are  presented  in  Figure 11.  These  series
were studied in dense and wide blob configurations. In a
second  step,  three  series  were  chosen  in  which  the
presumed switching between different  rules should have
been  visible,  and  these  series  were  then  expanded  to
display  the  presumed  performance  switching  in  much
better resolution. Each of these test series contained 13-15
conditions that were repeatedly tested in random order. In
addition to the wide blob raster stimulus patterns were also
presented in a new “packed” presentation in which targets
immediately  touched  the  distractors,  and  these  their

Published  online: 6-Jun-2015       © christoph.nothdurft@vpl-goettingen.de                                                                                 ISSN:2364-3641

Conclusions from Experiment     5:

In  matches  of  minimum  targets,  strong  deviations
from the salmin prediction will occur in wide patterns
with  small  distractor-to-background  luminance
variations. Differences between targets and distractors
and,  in  particular,  between  targets  and  background
may then be enhanced. 
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neighboring distractors, so that the background could not
be seen. Only two luminance levels were present in these
latter  patterns,  tg and  dis.  Furthermore,  in  one  of  these
series  (O68)  matches  were  performed  in  two  different
modes,  in  the  standard  mode  with  alternating  foveal
inspection of the two targets and in a “global inspection”
mode  in  which  the  targets  were  matched  from  a  gaze
position in the middle between the two patterns (cf. Exp. 4
in Nothdurft, 2015). The (time-consuming) tests were run
by subject HCN. 

Results and Discussion

Since  the  experiment  was  a  follow-up of  Experiment 3,
certain findings must be discussed together (see below).
Here, I will  only briefly present a selection of the main
observations. 

Figure 11 shows the matches of six of the additional test
series. In addition to the mean performance (Fig. 11a) also
the individual matches from repeated trials are plotted at
each test condition (Fig. 11b). Note that in only one test
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Figure 11. Additional test series in block O (Experiment 6). Graphs plot equal-salience matches; a. means; b. individual trials. All patterns
had the same backgrounds (crosses). Within a test series, reference patterns were constant (black symbols and horizontal lines) and test
distractors (open green circles) were systematically varied. Blue data points represent test target matches obtained in the wide blob raster, red
data points matches in the dense raster. Gray and black line curves show predictions from three standard algorithms (as indicated) and from
algorithm 10 (thick black lines). In certain conditions, matches were less certain than in others and single matches  (b) strayed widely (O94).
In only one test series (O95) did matches follow the predictions from algorithm 10.
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series  (O95) data  followed  the  predictions  from
algorithm 10 (thick black lines); in all other series the data
clearly deviated from these predictions. Instead, matches
strictly  followed  the  salmin predictions  when  test
distractors were brighter than reference distractors (green
open circles above the black open circle level), as in the
entire curves of test series  O99,  O98, and  O97, but were
less  predictable  when  test  distractors  were  darker  than
reference distractors (right-hand parts of test series  O96,
O95, and  O94). This is particularly obvious in test series
O94,  where  the  single  trial  matches  (Fig. 11b)  in  these
conditions were widely scattered. 

To study this phenomenon in more detail, in particular
at test conditions where one rule may change into another
one, three final test series with better resolution (i.e. with
finer gradation of distractor variation) were run. Figure 12
again  shows  mean  performance  (Fig. 12a)  and  the
individual matches from repeated trials (Fig. 12c). Series
O12a resembles  the  luminance  setting  of  the  original
series  O12, in  finer  resolution;  the  other  two series  are
new.  Matches  of  targets  in  wide  blob  arrangements  are
shown in blue, the additional matches of targets in packed
configurations in purple. 

It is interesting to look at the distribution of individual
matches  (Fig. 12c)  in  different  test  conditions  of  each
graph.  While  the  individual  matches  in  wide  blob
arrangements (dark-blue data points) fall relatively close
together  when  test  distractors  were  brighter  than  the
reference distractors (in the left-hand parts of each graph),
they tend to scatter more widely when test distractors were
darker than the reference distractors (right-hand parts of
each  graph).  This  larger  scatter  (also  seen  in  test  series
O94 in Fig. 11) might have been caused by several effects.
Some targets were still matched according to the  salmin
algorithm (thin black lines);  other  matches  were  shifted
more closely to the constant-addition rule (gray continuous
lines). And in some matches, test targets were apparently
even  matched  to  display  the  same  luminance  as  the
according reference targets (data points near the horizontal
line).  These  latter  matches  were  the  preferential
performance  in  the  global  matching  mode (targets  were
simultaneously  matched  from  a  central  fixation  point
between the  patterns)  when test  distractors  were  darker
than  the  reference  distractors  (Fig. 12c  and  d).  This
uncertainty of which match to follow apparently produced
larger variations for matches with test distractors outside
the reference background-to-distractor window than inside
that window. 

Also quite interesting are the results from matches with
blobs  in  “packed” configurations.  Because  the
background  is  not  visible  in  these  patterns  (target  and
distractors are touching each other), the DARK minimum
targets are, in fact, BRIGHT single targets on a distractor
luminance  background.  Equal-salience  matches  of  such
targets  should  follow  either  the  constant-ratio  or  the
constant-addition rule (Nothdurft, 2015), indicated here by
continuous and dashed gray lines,  respectively. The true
matches  lay  exactly  between  these  predictions  so  as  if
neither  rule  was  particularly  stringent  and  the  subject
could not decide which one to follow. 

Note that the data of Experiment 6 neither support the
strict bipartite model nor the fit from algorithm 10 (thick
black lines). When the test distractor was darker than the
reference  distractor,  curves  could  follow different  rules;
they could, at least for some test conditions, continue to
follow the  salmin prediction  (O12a, O19, O68) or widen
the  range  of  target  adjustments  to  darker  or  brighter
luminance  settings  (O94,  O68), and  might  only  finally
switch to the constant-addition rule when distractors are
sufficiently  different.  At  which  distractor  difference  the
decision  changes,  may  depend  on  the  mode  of  how
subjects  performed  the  matches  and  on  the  bias  of  the
entire  sample  of  test  conditions  in  a  given  test  series.
When biased to  compare the brightness of  targets  or  to
follow  the  salmin algorithm,  quite  a  few  matches  with
darker  test  distractors  might  still  be  adjusted  too  high.
When instead biased to look for similar target-distractor
differences, matches might more often follow the constant-
addition rule. This bias should naturally be also affected
by the relative frequency of test conditions in a particular
run. When a test series contains many test conditions that
clearly follow the  salmin rule,  a  few uncertain  matches
might also be adjusted this way. And when a test series
contains many conditions that force adjustments according
to the constant-addition rule, the uncertain matches might
be biased in this direction.

Experiment 6  has  provided  new  observations  and
interpretations which  I should like to  summarize before
going into a general discussion of the findings so far. First,
the  means  of  equal-salience  matches  do  not  necessarily
represent the mean of a single algorithm but may represent
the  averaged  performance  of  two  (or  more)  different
algorithms.  Second,  equal-salient  target  matches  may
follow different rules depending on the relative luminance
settings  of  reference and test  distractors.  Which  rule  an
observer would follow at transitions between these rules,
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may  be  uncertain  but  may  likely  also  depend  on  the
relative  frequency of  test  conditions  in  the  sample  that
clearly follow one rule.  Third,  complex algorithms (like
algorithm 10,  thick  black  lines  in  Fig. 11  and  12)  may
successfully predict the combined performance of different
rules in certain tests but may fail if transitions are shifted. 

Discussion of Section A

Hints for reading: The Discussion first summarizes the
results so far, stresses certain inconsistencies therein,
and  puts  the  observations  into  the  context  of
luminance  variations  in  nature.  It  may  be  worth
reading.  Headed  sections  further  down  address
various details of the observations, which you may skip
if  not  interested.  Important  is  the  distinction  of  item
salience  and  discrimination  salience.  Look  at  the
demos in Figures 13 and 14. There is a summary at
the end of this Discussion section.

Dedicated  to  uncover  the  computation  of  luminance-
defined salience of targets among distractors, Experiments
1-6 revealed several important findings. First, the salience
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Conclusions from Experiment     6:

For certain targets (here DARK minimum), salience
matches depend on the ranking of test and reference
targets.  In  transition  regions,  different  rules  may
coexist and leave the observer uncertain about which
rule to apply. Preferences may also depend on the test
sample. 

Figure 12.  Test for bipartite fits in test series block O (Experiment 6).  Graphs plot equal-salience matches in three test series with high
resolution; a, b. means; c, d. individual matches; presentation as before (backgrounds as crosses). Blue data points represent matches from
wide blob arrangements;  purple and orange data points are from new matches with  “packed” blob arrangements in which targets and
distractors touch each other so that the background is not seen. Matches were obtained in alternating foveal target inspections (a, c) or in
“global inspections” from a fixation point between the patterns. Gray and black line curves show the indicated predictions. None of these test
series provided evidence for bipartite fits of the data, and in none are the data fitted by algorithm 10. Note that matches in the packed blob
arrangements fell strictly between two standard predictions (purple and orange data points).
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of various targets is represented by different mechanisms;
that of DARK targets was computed differently from that
of  BRIGHT  targets  and  that  of  maximum  targets
sometimes differently from that  of  minimum targets  (cf.
Fig. 3).  This  confirms  that  it  was  useful  to  distinguish
these various cases in analysis. But it also indicates that
the  evaluation  of  luminance-defined  salience  might  be
more complicated than one might have thought. It does not
only require the evaluation of target-distractor contrast but
also the ranking of targets and distractors and hence their
differences  to  the  background.  Second,  even  for  targets
with similar  contrast  polarity to  background and similar
ranking  among  distractors,  salience  matches  did  not
always seem to follow one common rule,  but data from
different  test  series  were  best  fitted  by  different
algorithms. In test series block  K,  for example, salience
matches  of  DARK  maximum  targets  followed  the
constant-addition  or  the  constant-ratio  principles  (here
fitted by algorithms 1, 2, and 3) but in test series block L
were  better  predicted  by  the  normalized  Michelson
contrast  (algorithm 8).  In  terms of  the main  goal  of  the
study, to discover simple and hopefully general rules for
the  computation  of  luminance-defined  salience,  these
findings were discouraging and opened speculations about
other  yet  undiscovered  algorithms  that  might  better
explain the target salience in various configurations. This
idea is followed up in section C below.

“Natural” rules of salience computation

In the accompanying study on luminance-defined salience
of  single  items  or  blob  arrays  without  distractors
(Nothdurft,  2015)  data  have  underlined  two  principle
characteristics that reflect luminance variations of the real
world  and  hence  might  be  a  priori useful  models  of
salience computation.  When the illumination  of  a  scene
changes  (for  example,  when  clouds  hide  the  sun)  the
luminance  of  reflecting  surfaces  will  change  in  a  pro-
portional way (constant-ratio rule). Self-luminous targets,
on  the  other  hand,  which  often  are  brighter  than  other
objects,  will  add  a  constant  amount  of  luminance
irrespective  of  illumination  (constant-addition  rule).  It
would seem useful if the visual system could compensate
for  both  these  (natural)  luminance  variations  when
evaluating the salience of various items in a scene. In the
previous study the luminance settings of equal-salient blob
arrays  were  indeed  found  to  follow  the  constant-ratio
principle  but  this  rule  was  sometimes  disturbed  by  an

additive component, in particular when targets were very
bright  (Nothdurft,  2015).  The  uncertainty  of  observers
(also  seen  in  some  experiments  of  the  present  study)
whether  to  apply  the  constant-ratio  or  the  constant-
addition (or perhaps another) rule is a frequent observation
in  brightness-matching  experiments  and  apparently
influenced  by  additional  visual  cues  about  the  surface
structure  of  the  matched  objects  (Arend  &  Goldstein,
1987; Gilchrist, 1988; Robilotto & Zaidi, 2006; Schirillo,
1999a, b).  Purely  reflective  surfaces  are  more  likely
matched according to the constant-ratio rule. In the present
study,  however,  a  strictly  constant-ratio  behavior  (as
described by the Weber Contrast, algorithm 2) was so far
only  seen  in  some  test  series,  with  DARK  maximum
targets in series  K, L, and  F (Table 2, A1-A3) and with
BRIGHT maximum targets in series L, LX, and F (Table 2,
E2  and  E3).  In  other  test  series,  predictions  from
algorithm 2  were  not  among  the  best  ones,  and  the
constant-ratio  principle  generally  failed  to  optimally
predict targets in minimum configurations (Table 2, rows
C  and  G).  Interestingly,  the  occasionally  good  per-
formance of algorithm 2 with DARK maximum targets in
some tests does not hold when the MSD is calculated for
all test series together (Table 2, A5) but is then replaced by
the  constant-addition  principle  (algorithm 1)  which  had
produced quite good predictions in all test series and thus
wins the overall performance in tests on DARK maximum
targets.  For  BRIGHT  maximum  targets,  the  salmin
algorithm 5  makes  the  best  overall  predictions,  closely
followed  by  algorithm  2  (the  constant-ratio  principle;
Table 2, row E). 

In the following I will discuss three special observations
in  the  data  presented  so  far:  (i)  the  on  a  first  glance
perhaps  unexpected  finding  that  the  salience  of  DARK
maximum  targets  did  not  (or  only  weakly)  depend  on
background  luminance  (Fig. 3a  and  Fig. 9a);  (ii)  the
deviations  of  minimum  target  matches  in  small
background-distractor windows both from predictions and
between dense and wide pattern configurations (Fig. 3b,
K26 and K47, and Fig. 10), and (iii) the peculiar bipartite
fits (and partial misfits) of simple predictions to DARK
targets  in  minimum configurations (Figs. 7a,  8a,  11 and
12).

Salience variations with background changes 

If background, distractors, and targets would all represent
purely  reflective  surfaces,  then  variations  of  scene
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illumination  should  lead  to  proportional  luminance
variations.  Thus,  if  reference  patterns  and  test  patterns
were identical and only differently illuminated, and if the
visual  system  would  compensate  for  such  illumination
variations  when  evaluating  salience,  then  target
adjustments should represent exactly this ratio of changed
illumination (here given by a factor r). 

referencetestreference bgrbgbg 

   (3) referencetestreference disrdisdis 

referencetestreference tgrtgtg 

With uniform blob arrays or single items, this was indeed
observed  (Nothdurft,  2015).  Items  that  followed  the
constant-ratio principle (as given by the Weber contrast)
were seen as equally salient. With a scaling factor  k that
relates  salience  to  Weber  Contrast,  the  salience  of
distractors and targets on the background can be described
as 

bg

|bgdis|
sal bgdis


~:       

bg

|bgdis|
ksal bgdis


:

  
bg

|bgtg|
sal bgtg


~:       

bg

|bgtg|
ksal bgtg


:   

and that of targets to distractors (Table 1, algorithm 2) as

    
dis

|distg|
sal distg


~:       

dis

|distg|
ksal distg


:     .

Pure illumination changes as in equations (3) would not
change these results as  r can be factored out and then be
canceled.

In  the  experiments  of  test  series  blocks  K and  F,
however, test distractors were not changed in proportion to
background  but  were  held  constant.  This  should  have
changed their salience on background compared to that of
reference  distractors.  To  compensate  for  that  also  test
targets had to be changed. The correction factor should be
1/r to  hold distractor  luminance  constant,  and  the same
factor must be applied to test target luminance to keep the
relative salience of target and distractors constant. 

            referencetestreference bgrbgbg 

   (3a)     
1

referencereferencetestreference disdis
r

rdisdis  ,

            referencereferencetestreference tgtg
r

rtgtg 
1

.

In other words, the constant-ratio principle (algorithm 2)
would  predict  that  equal-salient  targets  among identical
distractors must be identical, irrespective of the according
background luminance. 

Note however that this conclusion has two restrictions.
First,  it  refers  only to  the relative salience  of  targets  to
distractors (in the following referred to as  discrimination
salience), not to the salience of targets (and distractors) to
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Figure  13.  Illustration  of  opposite  salience  effects  in  minimum  target  configurations.  When  target  luminance  changes,  either  the
discrimination or the item salience increase. In the extremes (left-hand or right-hand figures), item or discrimination salience may become
very large but targets are nevertheless not salient because they are indistinguishable from distractors or invisible on the background. This
opposite variation of salience effects occurs only with sparse blob arrangements and with targets in minimum configuration.

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           25

the  background  (in  the  following  referred  to  as  item
salience),  which  should  indeed  vary  with  background
luminance (Nothdurft, 2015). The difference is illustrated
in  Figure 13.  The  distinction  is  important  for
understanding the deviations of minimum target matches
discussed in the next paragraph. 

Second, the conclusion that the constant-addition rule is
not in conflict with the constant-ratio principle holds only
for the special test conditions of test series  K and F with
identical  distractors.  Predictions  should  look  different
when  distractor  settings  were  not  held  identical  (cf.
equations 2).  Proportional  luminance  variations  of
distractors and the target would then not represent constant
differences. In fact, the luminance settings of equal-salient
DARK maximum targets in test series block L were better
predicted  by  the  normalized  Michelson  contrast
(algorithm 8),  which  can  not  be  deduced  from  the
constant-ratio  principle.  The  normalized  Michelson
contrast  has  been  reported  to  predict  perceptual
transparency in certain stimuli (Singh & Anderson, 2006)
and one might have expected a much wider influence of
this principle in other configurations tested in the present
study. This was however not the case (Table 2).

Still, the observation that background variations do not
affect the salience of DARK maximum targets but strongly
affect  the  salience  of  BRIGHT targets  (Fig. 9)  remains
puzzling. The difference should be particularly strong in
dense  blob  arrangements  while  DARK  targets  in  wide
arrangements  might  require  corrections  when  target-
distractor differences are matched (Fig. 9a, test series F2).
The  differences are  visualized in  Figure 14 (you need a
printout without contrast enhancement to see all intended
variations, see Appendix) and nicely illustrate the interplay
of  item  and  discrimination  salience  even  in  maximum
target configurations.

In  each  row  of  Figure 14,  target  and  distractor
luminance  settings  are  the  same  and  only  background
luminance is changed. Rows thus illustrate the results of
Experiment 4 for DARK and BRIGHT maximum targets.
When evaluating the  item salience of DARK targets and
distractors,  you  find  distractors  loosing  their  salience
towards the right while all targets in the row look about
equally salient. This is true for high- and low-contrasting
DARK  targets  in  wide  and  dense  blob  configurations
(Fig. 14a-d).  Note  that  this  observation  should  be
astonishing, as also the item salience of the DARK target
is  diminished  when  the  background  is  darkened.
Apparently,  DARK  target  item  salience  is  only  little

modulated  by  background  variations  if  the  target-to-
background contrast is large. The impression is different
with  the  BRIGHT  targets,  however.  While  high-
contrasting targets (Fig. 14e, f) remain about equal-salient,
BRIGHT  targets  with  a  smaller  target-to-background
contrast become more salient towards the right and should,
for an equal-salience match, be reduced in their contrast to
the  background, as  seen in  Experiment 4  (Fig. 9c).  This
variation is particularly obvious in the dense blob raster
(Fig. 14h).  When  adjusting  targets  for  a  similar
discrimination from distractors, however, one might want
to reduce target contrast from left to right (thus confirming
the light-blue data curves in Fig. 9a). 

Deviations in small distractor-background windows

While  salience  matches  in  dense  and  wide  blob
arrangements were often quite similar, there were notable
differences in certain test conditions (Fig. 3). In these test
series, matches did not only differ between the two blob
densities tested but also deviated from the expected salmin
prediction for minimum targets. Deviations were strongest
in  test  series  with  small  distractor-to-background
differences in the test pattern (e.g.,  series  K43, K26 and
K47) but nearly absent when the distractor-to-background
difference was large enough (e.g., series  K25). Similarly
strong  deviations  were  seen  in  Experiment 5  (Fig. 10),
where looking at the data in more detail had finally helped
to  understand  the  basis  of  these  deviations.  Can  we
understand also the deviations seen in Figure 3?

A first hint comes from the individual matches of the
three  observers  with  test  series  K47  (Fig. 15b).  Only
subject MCV (red symbols) had produced matches close
to the  salmin prediction, and these were similar in dense
(filled  symbols)  and  wide  patterns  (open  symbols).  In
contrast, subject AJ (green symbols) had adjusted targets
in the wide and the dense blob raster quite differently. The
data of subject HCN (blue symbols) lay in between. The
curves of  all subjects, however, flattened with decreasing
reference  target  luminance,  and  wide  blob  raster  curves
generally  failed  to  reach  the  lower  left  corner  of  the
framed background-distractor window.

To  understand  these  variations  it  might  be  helpful  to
imagine how the stimulus patterns had looked like in these
test  conditions.  A  BRIGHT  reference  target  (abscissa)
notably darker than distractors (vertical dashed lines) but
notably brighter than the background (vertical continuous
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Figure 14 
Legend next page
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lines) had to be matched with a test target (ordinate) that
could  differ  only little  from distractors  and  background
due to the much smaller background-distractor luminance
span (horizontal lines; please notice the different scales in
x and y). If subjects had linearly adjusted the test target in
wide blob patterns to values along the  salmin prediction
line, some targets had become barely discriminable from
background.  To  make  them as  visible  as  the  according
reference  targets,  subjects  increased  the  target-to-
background contrast. Thus, it is not surprising that, in the
wide  blob  raster,  matches  of  targets  approaching

background luminance leveled off at a certain threshold in
the small test distractor-background windows. They might
have  only  decreased  further  when  also  the  reference
targets were close to background and (almost) invisible (as
it was the case in Experiment 5). 

But why did these deviations only occur with matches
in sparsely arranged blobs (open symbols) and turned over
into  deviations  in  the  opposite  direction  (curves  steeper
than  predicted  from  the  salmin algorithm)  in  dense
arrangements (filled data points)? As can be visualized in
Figure 2, target and distractors in dense configurations are
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Figure 14  (previous page). Background effects on target salience. a-d. DARK targets;  e-h. BRIGHT targets. In  each row, targets and
distractors are constant and only backgrounds are varied. As a consequence, the item salience of targets and distractors diminishes from left
to right. This is, however, mainly noticed for distractors which become almost invisible in the right-hand patterns. This figure illustrates the
different effects from background variations as measured in Experiment 4. The salience of DARK targets in wide (a, c) and dense (b, d) blob
arrangements is less affected by background variations than the salience of BRIGHT targets (e-h). This is particularly obvious in (d) and (h).
While the salience of the DARK targets is about the same within the row, that of the BRIGHT targets increases from left to right. To make
these targets equal-salient, their contrast must be reduced, as found in Experiment 4 (Fig.9c). Note that also the contrast of DARK targets in
(c) should be reduced if these were not matched for equal salience but adjusted for similar discrimination from distractors. (You may need a
printer with linear output characteristics to see appropriate luminance variations; see Appendix.)

Figure 15. Detailed look into deviations in Figure 3 (BRIGHT targets). In certain test series of Experiment 1, there were notable deviations
of equal-salience matches from the straight salmin predictions and between matches in wide and dense blob configurations (cf. labels 1-3 in
Fig.3). The data of two test series are here re-plotted to discuss possible reasons; please note the differently enlarged y scales in the graphs.
Curves show target-target variations as in Fig.4. Distractor and background settings were constant within each series and are shown as
continuous (backgrounds) and dashed lines (distractors), respectively. Colors distinguish means and data from different subjects; matches
from different blob arrangements are indicated by filled (dense) and open circles (wide). a. Mean data and b. matches of individual subjects
in test series K47 (cf. Fig.3b, label 3). c. Mean data with test series K25 (Fig.3, label 1). Deviations in (a) and (b) are explained by the low
item salience of test targets in wide blob arrangements. Deviations in  (c) (arrows) reflect local shifts towards constant-ratio (also seen in
Fig.10) when targets are similar to distractors.  Straight  lines give the salmin (algorithm 5) and the target-to background constant-ratio
predictions.

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           28

arranged so close to each other that mainly the target-to-
distractor  contrast  is  seen  and  the  target-to-background
contrast  becomes  less  important.  In  dense  blob
arrangements, therefore, there was no need to enhance the
target-to-background contrast  to  make the  target  visible.
Here, two subjects had instead over-enhanced the target-
to-distractor  contrast  in  the  test  pattern  (Fig. 15b;  green
and blue filled circles). This too can be understood from
the different distractor-background luminance windows in
reference  and  test  patterns.  To  match  the  large  target-
distractor contrast in the reference pattern, the test target
should  have  quickly exceeded  the  much  smaller  target-
distractor  luminance  span  of  the  test  pattern.
Enhancements below the background level, however, were
prohibited  by  the  software  in  experiment;  therefore
deviations  in  dense  patterns  could  maximally  reach
background  luminance  and  thus  had  flattened  there  (cf.
Fig. 15b).

 Thus, the deviations in widely spaced blob patterns in
test series K47 (Fig. 3, label 3) are likely the results of two
different salience effects, the  discrimination salience that
lets  the  target  stand  out  from distractors,  and  the  item
salience that  lets  the  target  stand  out from background.
Although  experiments  were  designed  to  measure  (and
match) discrimination salience, i.e. the strength at which
the  target  differed  from  distractors,  subjects  apparently
made additional adjustments when item salience was too
small.  This  effect  was  only  seen  in  wide  blob
configurations  and  only  with  targets  in  minimum
configuration, since only these could have produced (too)
faint  targets  among  stronger  distractors.  For  targets  in
maximum configurations item salience was always larger
than discrimination salience.

This  interpretation  is  supported  by  the  findings  in
Experiment 5 (Fig. 10). The finer resolution of luminance
variations in that experiment and the inclusion of reference
targets  close  to  background  had  obviously  helped  the
subjects  to  overcome  threshold  settings  in  luminance
adjustments. But the fact that almost all subjects adjusted
background-near  targets  according  to  the  constant-ratio
principle indicates that matches were made for equal item
salience  (target-to-background  differences)  rather  than
equal  discrimination  salience  (target-to-distractor
differences).

Deviations as in Experiment 5 were also seen with large
background-distractor  windows  in  Experiment 1  when
target luminance was close to  distractor luminance (e.g.,
K25 in Fig. 3; label 1). Data points of matches are locally

shifted  away  from  the  salmin predictions  towards  the
identity line (here representing the constant-addition and
the  constant-ratio  rules).  These  (relatively  small)  local
deviations  were  seen  with  both  dense  and  wide  blob
configurations  and  with  both  maximum  and  minimum
targets (Fig. 15c, arrows). 

Multiple or bipartite fits

One peculiarity in the fits was the matching performance
in  test  series  block O.  The  original  data  were  closely
predicted by algorithm 10 (Fig. 8a,  left-hand graph),  but
could alternatively be also predicted by a bipartite fit of
the salmin algorithm 5 (when test distractors were brighter
than  reference  distractors)  and  the  constant-addition
algorithm  1  (when  test  distractors  were  darker  than
reference  distractors;  Fig. 7a).  In  a  later  follow-up
experiment (Exp. 6) however, neither algorithm 10 nor the
bipartite fit of algorithms 5 and 1 could reliably predict the
data  of  all  test  series  (Fig. 11  and  12).  Instead,  the
experiment showed that matching performance was rather
variable  and  perhaps  even  uncertain  for  some  test
conditions.

To  see  if  such  an  uncertainty  might  have  also  been
present in the matches of Experiment 3, the original data
are re-analyzed and re-plotted in Figure 16. In addition to
the  means  (re-plotted  in  Fig. 16a)  also  the  individual
matches are shown (Fig. 16b). As is particularly obvious
with  test  series  O12, response  variations  are  similar  to
those  in  Figures 11  and  12.  When  test  distractors  were
brighter than reference distractors (data points on the left),
the matches strayed little  and mainly around the  salmin
prediction. But when test distractors became darker than
reference  distractors  (data  points  on  the  right),  the
individual  matches  were  distributed  more  widely,  in
particular in the transition conditions when test distractors
were  only little  darker  than  reference  distractors  (O11).
Test  targets  were then sometimes  matched  even  equally
bright to the reference target. In none of the curves was
there an obvious “switch” from one algorithm to the other.
The  uncertainty  at  intermediate  settings  has  produced
mean  data  that  are,  in  this  particular  experiment,  best
described by algorithm 10. But Experiment 6 has shown
that the same matches in other samples of test conditions
may  differ  and  are  then  not  adequately  fitted  by  this
algorithm.
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Summary of Section A

From a large number of test series in which two targets
were matched for salience, we can now draw the following
conclusions. 

1. Matching performance appeared to follow systematic
rules, that is, subjects made similar adjustments, and target

settings varied in an apparently regular way, when various
luminance parameters of the patterns were changed. 

2. However, there was no single, common rule of how
salience  of  different  targets  is  computed,  but  salience
computation  depended  on  various  stimulus  parameters
such as target luminance polarity to background, target-to-
distractor ranking and, in some conditions, also the density
of target and distractor arrangements. 

3. Within each of these target groups luminance settings
of  equal-salient  targets  can  often  be  predicted,  but
formulas may require more distinctions than were initially
made.

4.  In  addition  to  all  these  variations,  target  salience
(even  just  in  the  luminance  dimension)  is  defined  from
several properties, and different salience effects may add
or cancel each other. Targets are salient because they differ
from  distractors  (discrimination  salience),  but  also
because they differ from background (item salience). 

5.  Subjects,  by  attending  to  different  such  salience
components,  could  identify  the  same  pair  of  targets  as
exactly equally salient or not. This might create a general
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Conclusions from Discussion:

Demos illustrate the difference between item salience
and discrimination salience (Fig. 13) and the different
sensitivity  of  DARK  and  BRIGHT  targets  to
background  variations  (Fig. 14).  –  Deviations  from
simple  predictions in  Figure 3  can  be  explained  by
large  differences  between  background-distractor
settings  in  reference  or  test  patterns.  –  Uncertain
transitions  between  salience  computation  rules  may
lead to singular and seemingly peculiar fits.

Figure  16.  Re-plot  of  the  wide  blob  raster
data  in  Figure 7.  a. Means  of  wide-raster
matches and b. according single trial matches.
Experiment 6 has suggested different matching
rules for different target conditions, which led
to  an  increased  response  variability  for
intermediate settings. This re-plot was made to
look  for  similar  variations  in  the  data  of
Experiment 3. Indeed, matches varied around
the  salmin  prediction (thin black lines) when
test  distractors  were  brighter  than  reference
distractors (left-hand sides in each graph and
entire  series  O13) and  tended  to  approached
constant-addition or constant-ratio rules (gray
lines) when test distractors were much dimmer
than reference distractors (far right-hand sides
of  graphs).  In  intermediate  ranges  matching
variability was increased. In some (but not all)
test series, the best fit of the resulting data was
made by algorithm 10 (thick black lines).
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problem  for  salience  matches  as  in  the  present  study.
Despite  this  variability,  however,  there  was  a  large
consistency  in  the  subjects’  performances,  and  even
uncertainties in matching decisions seemed to be averaged
out when several matches were repeated.

B: SALIENCE MATCHES OF DIFFERENT TARGETS

Hints  for  reading: This  section  reports  salience
matches  of  different target  types.  Experiments  7-10
compare  targets  in  maximum  and  minimum
configurations  (look  it  up  in  Fig.1)  with  partly  a
replication  of  maximum to  maximum target  matches
from  section  A.  The  new  aspect  here  is  that  test
patterns  serve  as  a  constant  measure  of  target
salience. Experiments 11 and 12 compare bright and
dark targets in various configurations. Experiment 13
compares  the  salience  of  targets  in  the  maximum-
minimum paradigm.

All experiments so far have compared same target types in
similar conditions, that is, reference and test targets were
either both dark or both bright, and were both presented in
either the maximum or the minimum configuration. These
restrictions are given up in the following experiments.

Experiments 7-10: 
Matches of similar targets in maximum and minimum
configuration (test series block J)

In  most  experiments  of  section  A,  a  constant  reference
pattern  had  been  compared  with  various  test  pattern
settings  to  find  the  systematic  luminance  variations
underlying  equal  salience.  The  opposite  procedure  was
followed in Experiments 7-10. Various reference patterns
were compared with one common test pattern, in which
background and distractor settings were held constant and
only target luminance could be adjusted. This had several
advantages. The major advantage was that the constant test
pattern could now serve as a constant measure to compare
the target  salience of  different  reference patterns,  which
had not been possible in the previous experiments.

One  goal  of  this  new  approach  was  to  compare  the
salience of targets in different presentations, like targets in
maximum  and  targets  in  minimum  configuration.
Experiment 1 has shown that the algorithms to compute
target salience in these two conditions might be different

(cf. Fig. 3a); it would therefore be helpful to compare the
salience  of  these  targets  to  a  constant  measure.  The
previous experiments have further suggested that targets in
the  maximum  configuration  are  easier  to  adjust  than
targets in the minimum configuration, which are affected
by item and discrimination salience; therefore, test patterns
with dark or bright  maximum targets were chosen as the
comparison  measure.  To  allow  for  a  maximal  range  of
possible target adjustments, backgrounds were set to the
monitor  limits  (low  for  bright  targets;  high  for  dark
targets) and distractors slightly above or below so that they
were well seen but did not too much restrict the remaining
range for target adjustments. 

In addition to the intended comparison of minimum and
maximum  target  salience,  the  new  procedure  was  also
used  to  repeat,  and  hopefully  confirm,  some  of  the
previous matches of targets in maximum conditions. The
adjustments of a fixed salience meter should now allow us
to compare the salience strength of different such patterns
(which  had  not  been  possible  with  the  experiments  of
section  A).  Altogether,  the  various  target  combinations
created  four  experiments  with  different  blocks  of  test
series.

Stimuli

Twenty test series were created for Experiments 7-10 and
grouped  in  four  blocks  associated  with  the  four
experiments. Two blocks (Experiments 7 and 9) displayed
DARK targets,  and  two blocks  (Experiments  8  and  10)
BRIGHT  targets.  DARK  targets  were  matched  with
DARK targets and BRIGHT targets with BRIGHT targets.
In one of each two blocks, reference targets were shown in
maximum  configuration  (Experiments  7  and  8),  in  the
other two blocks in minimum configuration (Experiments
9 and 10); test targets were always presented in maximum
configuration.

Every block contained six or seven test series that were
presented  in  five  experimental  runs  with  8-9  stimulus
patterns each.  Background luminance was constant over
each experiment and was always the same in reference and
test  patterns.  Distractor  and target  luminance settings in
reference  patterns  were  systematically  varied  over  the
different  test  series,  as  illustrated  in  Figure 17,  for
example.  Distractor  settings  in  the  test  patterns  were
constant and only targets could be adjusted. In each single
run of a test series, all stimulus conditions were presented
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twice,  in  pseudo-random  sequence,  with  exchanged
locations on the screen. The observers’ task was always to
match  the  two  targets  for  salience,  as  in  all  previous
experiments of the study.

The  same  three  subjects  that  had  performed
Experiments 1-4  also  performed  Experiments 7-10.
BRIGHT  targets  in  wide  blob  configurations  were
sometimes hard to match, and these tests (Experiments 9
and 10) were not performed by all subjects.

To estimate the influence of certain parameters in the
matches of Experiment 9 (DARK minimum and maximum
targets),  three  additional  test  series  were  performed  by
subject  HCN,  in  which  either  the  background  in  the
reference patterns or the distractor level in the test patterns
were set to new values. These test series included all test
conditions of Experiment 9 (which did not fall outside the
new parameter settings) and were only run on dense blob
raster conditions.

Results and Discussion

Targets in maximum configuration (Experiments 7 and 8)

The  matches  of  reference  targets  in  maximum  target
configuration are partly confirmatory; similar matches had
already been made in  test  series  blocks  K, L, and  F of
section  A.  However,  in  none of  the previous test  series
could the target salience itself be measured. 

Figure 17 gives an overview of the matches with DARK
maximum  targets (Experiment 7).  Distractor  and  target
settings  in  the  reference  patterns  were  systematically
varied (Fig. 17a); the various test conditions in the figure
are aligned so that reference targets fall upon straight lines
(gray).  The  according  matches  in  the  test  patterns
(Fig. 17b) show a similar target variation but now touched
to the different (and, in fact, constant) distractor luminance
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Figure 17. Equal-salience matches of DARK maximum targets in Experiment 7. The new step in this and the following experiments is that
matches are made with a constant test pattern setting (in which only test targets were adjusted), which could thus serve as a constant meter of
reference target salience. The figure shows all test conditions of Experiment 7. Symbols as in previous figures.  a. Luminance settings of
reference patterns; on constant background, distractor and target luminance settings were systematically varied. b. According matches of test
targets on the same backgrounds, with constant distractor settings. Data points were shifted in  x to let reference targets fall upon straight
lines; the same shifts were used in the presentation of test pattern data. Matches were obtained with dense (red circles) and wide blob
arrangements (blue circles). Predictions of the data from various computational algorithms are shown by superimposed lines. Best fits were
obtained with the constant-addition rule and with algorithm 8. Framed numbers serve as labels referred to in text.
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setting in the test patterns. We know (Nothdurft, 2015 and
unpublished data)  that  the salience of DARK targets  on
constant background varies with the luminance contrast of
targets  and background. Thus,  the test  targets at label  1
(Fig. 17b) were more salient than the test targets at label 2.
From comparison with the corresponding reference targets
in  Figure 17a  we  can  therefore  conclude  that  DARK
targets among very dark distractors (right-hand test series
in Fig. 17a; label 2) are less salient than the same DARK
targets among less dark distractors (left-hand test series,
label  1).  Interestingly,  test  targets  at intermediate curves
(e.g., label 3) were sometimes adjusted to similarly large
amplitudes  as  the  test  targets  at  label  1,  although  the
according reference distractors were already dimmed.

Of particular interest is whether the target-to-distractor
(“discrimination”)  salience  would  relate  to  constant
addition, constant ratio (Weber contrast) or other simple
computation  rules.  In  series  K and  F of  section  A
(Experiments 1 and 4), matches had followed the constant-
addition  and  constant-ratio  rules,  which  could  not  be
distinguished  in  these  tests.  In  series  L (Experiment 2),
however, where these algorithms could be distinguished,
matches were best fitted by predictions from algorithm 8.
In  the  present  data  (Fig. 17),  the  constant-addition
principle (|tg-dis|=constant) would let test targets fall upon
lines parallel to  those of  the reference targets (Fig. 17b,
continuous  gray  lines),  whereas  the  constant-ratio
principle (tg/dis=constant) would cause them to cover the
full  luminance  range  of  distractors  and  background
(dashed gray lines).  The data apparently show both;  the

similarity of reference and test target slopes at labels 1 and
2  supports  the  constant-addition  model,  but  the  similar
range of target settings at labels 1 and 3 the constant-ratio
model.  Constant  ratio,  however,  does  not  predict  the
matches of targets among dim distractors (curves at label 2
and the three curves to the left of it). In fact, the various
matches  are  rather  well  predicted  by algorithm 8  (thick
black lines)  which  produces similar  MSD values  as  the
constant-addition algorithm 1 (cf. Table 2, A4).

The different predictions from the constant-addition and
constant-ratio principles in Experiment 7 are illustrated in
the  target-to-target  scatter  plots  of  Figure 18.  While  the
constant-addition  principle  predicts  that  data  points  fall
upon  parallel  lines  with  slopes  of  m=1 (Fig. 18a),  the
constant-ratio principle would predict that they should fall
upon lines with different slopes (m1) all pointing to the
origin (Fig. 18b). The experimental data (Fig. 19) do not
show such a systematic slope variation, neither with dense
(Fig. 19a)  nor  with  wide  blob  configurations  (Fig. 19b).
Linear regression lines of  the data  reveal  slopes around
m=1, with no systematic shifts. And most data points fall
closely upon straight  lines,  not  on the curved lines  that
should be expected from algorithm 8 (Fig. 18c).
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Figure 18. Predictions of target-to-target variations in Experiment 7. Curves show the expected courses of target-to-target variations when
salience  were  based  on  certain  salience  computations  (Table 1);  a. constant  addition  (algorithm 1);  b. constant  ratio  (algorithm 2);
c. algorithm 8. Comparison with Fig.19 reveals (a) as the most likely basis of salience matches in this experiment.

Conclusions from Experiment     7:

Target type Salience variations follow

DARK maximum constant-addition rule
(algorithm 1)
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An  analogous  overview  of  the  BRIGHT  maximum
target  matches (Experiment 8)  is  shown  in  Figure  20.
Again, distractors and targets were systematically varied in
the  reference  patterns  (Fig. 20a)  but  only  targets  were
adjusted  in  the  according  test  patterns  (Fig. 20b,  c).
Backgrounds  were  same  and  constant.  BRIGHT  target
matches in the wide blob raster turned out to be difficult
and variable, and were performed by only one subject. For
analysis, the data from dense and wide blob patterns were
therefore  pooled.  Predictions  from constant  ratio  (gray)
and the salmin algorithm (black) both seem to fit the data
quite  well  except  for  the  left-hand  curve  where  test
distractors were brighter than reference distractors and test
targets  should  have  been  adjusted  to  much  brighter
luminance settings if the predictions were to be fulfilled.

In  the  experiments  of  section  A,  BRIGHT  targets
followed, beside algorithm 8, either the  salmin algorithm
(series  K and  F;  Table 2,  E1,  E3) or  the  constant-ratio
principle  (series  L and  LX;  Fig. 5b,  c;  Table 2,  E2).
Both algorithms made similar but not identical predictions
in  Experiment 8.  They  only  differ  in  the  divisor
(sal~|tg-dis|/dis,  for  constant  ratio;  sal~|tg-dis|/|bg-dis|,
for the salmin algorithm; see Table 1). This difference can
be visualized with the scatter plots in Figure 21. All curves
have to cross the intersection of the according distractor
levels  (dashed lines).  Prediction  curves  from the  salmin
algorithm will also cross the intersection of  background
levels (as shown in Fig. 21b), whereas prediction curves
from  the  constant-ratio  principle  would  intersect  at  the
origin  (zero  luminance;  not  shown).  With  the  low
background settings of Experiment 8, these differences are
small.

Both  predictions  closely  fit  the  data  of  all  but  one
curves (Fig. 21a; cf. Fig. 20c). The left-most curve (black
in Fig. 21a and steepest prediction line in Fig. 21b) with
test targets  brighter  than reference targets is  not  met by
these predictions. Instead, the data curve runs parallel to
the  identity  line  (dotted  in  Fig. 21a)  thus  following  the
constant-addition principle.  Deviations  are  only  seen
when test targets should have exceeded the limits of the
monitor  (gray-filled  data  points  near  label  1).  This
confirms  earlier  observations  (cf.  Experiment 2,  and
Nothdurft, 2015) that targets which are the brightest items
in  a  scene  may be  frequently adjusted  according  to  the
constant-addition rule. 

The close fit  of the data  in Figure 20c is reflected in
small MSD values (Table 2, E4). The MSD values for the
salmin algorithm  5  and  the  constant-ratio  principle
(algorithm 2) are  similar  and both small,  when the left-
most, deviating curve (label 1 in Fig. 20c) is not included. 

Note that the test series also included identity matches
(red data in Fig. 21a, labels 2 and 3 in Fig. 20c), in which
reference and test patterns displayed identical background
and distractors settings.  Perfect adjustments should have
revealed  identical  target  settings  in  reference  and  test
patterns.  This  was,  however,  not  exactly  found  but
matches  of  very  bright  targets  deviated  from  identity
(label 3  in  Fig. 20c).  The  deviation  might  have  been
caused by two effects, (a) the restricted exploration range
when  target  luminance  was  close  to  the  monitor  limit
(which  might  have  biased  subjects  to  adjust  targets
dimmer than in  a  perfect  match),  and (b)  the decreased
sensitivity  to  luminance  variations  in  bright  targets
(Nothdurft,  2015).  But  neither  effect  could  explain  the
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Figure 19.  Measured target-to-target variations of
DARK maximum target  matches  in  Experiment 7.
a. Dense blob arrangements;  b. wide blob arrange-
ments.  Continuous  black  vertical  and  horizontal
lines  indicate  background  luminance,  which  was
identical in reference and test patterns in all tests of
Experiment 7. Dashed horizontal and vertical lines
indicate  the  distractor  settings  which  also  were
identical in all test patterns (horizontal black line)
but  varied  across  reference  patterns  (color-coded
vertical lines); the according data points are plotted
in the same color. Thick oblique lines are regression
lines  through same-color  data  points;  their  slopes
are  listed  aside.  Data  points  and  regression  lines
tend to run in parallel to the identity line (test target
= reference target) and thus support the constant-
addition model. 
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systematic  switch  from  salience  computation  along
constant-ratio  or  salmin  algorithms  in  the  right-hand

curves to salience computation along constant addition in
the left-most curve 1.
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Figure  20.  Equal-salience  matches  of  BRIGHT
maximum  targets  in  Experiment 8. Symbols  and
presentation as in  Fig.17.  a. Luminance settings of
reference patterns;  b. luminance settings of salience-
matched  test  patterns;  c. averaged  data  from dense
and wide blob patterns in  (b),  with predictions from
constant  ratio  (dashed  gray  lines)  and  the  salmin
algorithm (thin  black  lines).  Both  predictions  are
similar  and,  except  for  the  left-hand  data  curve
(label 1), closely fit the data. The matches at labels 2
are  identity  matches  (same  backgrounds,  same
distractors)  which  however  deviated  at  large
luminance  settings  (label  3).  Same  targets  among
different  distractors  varied  notably  in  salience  (cf.
labels 3 and 4).

Figure  21.  Scatter-plots  of  target-to-target
variations in Experiment 8 (BRIGHT maximum
targets). Presentation  as  in  Fig.19. a. Matches
from  Fig.20c.  Vertical  and  horizontal  lines
indicate background (continuous) and distractor
settings  (dashed).  Thick  oblique  lines  are
regression lines through the data points (except
those with gray kernels). b. Predictions from the
salmin algorithm  5  (cf.  Table 1).  Predictions
from constant ratio look very similar except that
lines would cross the origin. The label number is
referred to in the text.
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We  can  thus  conclude  that  the  salience  of  BRIGHT
maximum targets follows the  salmin or the constant-ratio
algorithm as  long  the  luminance  range  of  the  reference
pattern  is  not  exceeded,  but  that  there  is  a  tendency to
weaken occasional  bright  targets  outside  this  range  and
match  them  according  to  the  constant-addition  rule
instead.  This  corresponds  to  observations  made  with
homogeneous blob arrays (Nothdurft, 2015). 

Note that the luminance of test targets in Figure 20c is
directly  (but  not  necessarily  linearly)  related  to  their
salience. We can thus draw similar conclusions about the
salience of identical targets among different distractors, as
we  did  with  DARK  targets  before.  The  salience  of  a
BRIGHT  maximum  target  among  bright  distractors  is
reduced when the luminance difference between target and
distractors is diminished (cf. targets at labels 3 and 4 in
Fig. 20a and c). Different to DARK targets, however, this
reduction  is  not  linearly  related  to  the  luminance
difference between target and distractors but is normalized
to  the  (simultaneously  increasing)  distractor-to-
background  luminance  change.  That  is,  BRIGHT
maximum targets loose their salience faster than DARK
targets when the item salience of distractors is increased.

Targets in minimum configuration (Experiments 9 and 10)

Minimum targets were so far not compared with maximum
targets and the outcome of Experiments 9 and 10 cannot
be easily predicted from the experiments in section A. At
least  for  DARK  targets,  the  algorithms  predicting
matching  performance  with  either  target  type  were
different  (cf.  Table 2,  A5 vs.  C5).  This  leaves room for
new and unexpected observations, which then need to be
evaluated and interpreted.

Indeed, when matching DARK targets (Experiment 9) in
wide  blob  configurations,  a  first  surprise  occurred.
Figure 22  shows  the  various  reference  pattern  settings
(black) together with the matched test pattern settings of
the  individual  observers  (colored).  Note  that  the
discrimination salience of the DARK minimum reference
targets increases when target luminance is  increased (and
targets become more distinct from distractors) but that of

the  DARK maximum test  targets  increases  when  target
luminance  is  decreased (and  targets  also  become  more
distinct from distractors). Thus, on a first view the data in
Figure 22  show  that  an  increasing  (minimum)  target
salience  in  reference  patterns  is  accompanied  by  an
increasing (maximum) target salience in test patterns, as
one should expect. The figure also shows that in reference
patterns with a small luminance range (right-hand curves)
target salience is generally reduced compared to patterns
with a  larger luminance range  between background and
distractors  (left-hand  curves).  The  general  outline  of
salience  variations  with  minimum  targets  is  thus  not
different to what had been found with maximum targets. A
surprise however, was the matching of targets in wide blob
configurations. While subject AJ made similar adjustments
for  targets  in  dense  (red)  and  wide  blob  configurations
(blue), subject HCN performed quite differently in the two
tasks. Particularly interesting are the data of subject MCV,
who had performed differently in  two runs on the wide
blob  raster.  In  the  first  run  (dark-blue  data  points),  her
matches were similar to those obtained with dense blob
configurations  (and,  by  and  large,  similar  to  those  of
subject AJ, although at different sensitivity). In a later run
(light-blue data points), however, her matches were quite
different and for brighter reference targets much closer to
the distractors (indicating reduced target salience). From
the discussion in  section A we must assume that  in  the
second  run  the  subject  did  not  only  evaluate  the
differences  between  targets  and  distractors  but  also  the
target’s item salience (based on the difference of targets to
background).  Minimum  targets  near  background
luminance are strongly different from distractors but are
simultaneously  very  similar  to  background,  and  hence
display little or no item salience (cf. Fig. 13). Apparently,
subject MCV had switched from evaluating solely target-
distractor  differences  in  the  first  run  to  evaluating  true
target salience in the second run, whereas subject AJ had
matched  the  target-distractor  differences  in  all  her  runs.
Subject  HCN  matched  salience  (in  its  combination  of
discrimination and item salience) in all his runs right from
the beginning. Similar variations in performance were  not
seen in dense blob configurations, as item salience occurs
predominantly in wide but not dense blob arrangements.
Note  that,  although  the  preference  of  subject  AJ  for
discrimination  contrast  might  have  been  switched  by
special  instructions,  the  rivaling  effect  of  item salience
was  nevertheless  present  and  led  to  an  increased
variability of target matches in some of her adjustments. 
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Conclusions from Experiment     8:

Target type Salience variations follow

BRIGHT maximum salmin (algorithm 5) or
constant-ratio (algorithm 2)
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Because  of  the  different  performances,  the  data  from
wide blob configurations were split and further analyzed
in  separate  samples  (Fig. 23).  One  data  sample  (”wide
sample1”; dark-blue  symbols)  included  the  matches  of
subject AJ and of the first run of subject MCV; the other
sample (”wide sample2”; light-blue symbols) included the
matches of subject HCN and of the second run of MCV.
Matches  with  dense blob  configurations  were  averaged
from all three subjects (red symbols). Note that the smaller

sample and the different sensitivity of subjects MCV and
AJ (cf. Fig. 22) have strongly increased the s.e.m. of the
mean data in the wide sample1 data; these variations were
smaller in the  wide sample2 (less data variation) and the
dense configuration data (three subjects).

Scatter plots of salience-matched targets in dense and
wide configurations are shown in Figure 24. With dense
blob  configurations  (Fig. 24a)  data  points  fall  upon
parallel straight lines with slopes of  m=-0.53 to  m=-0.68
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Figure  22.  Equal-salience  matches  of  DARK
minimum and maximum targets (Experiment 9).
Symbols and presentation of luminance levels as
in  Fig.17;  reference  pattern  settings  in  black,
matched  test  pattern  settings  in  color.  The
individual  matches  of  three  subjects  show
different  response  characteristics  in  wide  blob
patterns (blue data points), which did (HCN) or
did not  (AJ) take care of item salience.  Subject
MCV had switched from one mode to the other in
different runs (different blues).
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(mean slope m=-0.61 ± 0.05). The same is true in the wide
sample1  data  (Fig. 24b),  although  slopes  are  generally
steeper  (mean  m=-0.73 ± 0.07)  and  some  curves  are
clearly bent rather than straight (e.g.,  black data points).
The  slope  of  the  black  curve  is  quite  different  if  the
regression line is fitted to only the first five data points
(m=-1.16; dashed  regression  line).  However,  the  wide
sample2 data look quite different (Fig. 24c). Curves start
off from low target-to-distractor contrast (colored dashed
lines indicate the according distractor settings) at slopes
similar to those in dense patterns, but then quickly reach a
plateau while the reference target-to-distractor contrast is
further increased, and finally drop back to values near test
distractors (low test target salience) at maximal target-to-
distractor and minimal target-to background contrast in the
reference patterns. This “drop-back” reflects the reduced
item  salience  of  reference  targets  when  they  approach
background luminance (continuous vertical black line) and

was seen in all curves at the two highest reference target
settings  tested.  Thus,  item  salience  predominated  the
matches  mainly  at  these  two  target  luminance  settings
(63.0 cd/m2 and  59.8 cd/m2,  on  67.8 cd/m2 background
luminance) and was less important from the third-highest
tested target setting on (55.3 cd/m2 and below).

It is interesting to look at algorithms that could predict
these results. While the equal-salience matches of DARK
maximum targets in section A (and in Experiment 7) were
well  predicted  by  algorithm 1  (sometimes  indistin-
guishable  from  algorithms 2  and  3)  and  algorithm 8
(Table 2, row A), the best predictions of DARK minimum
target matches were obtained from algorithms 10, A, and
others, but not algorithms 1, 2, or 8 (Table 2, row C). In
the scatter plots of Figure 24, combinations of algorithm 1
should have produced straight and parallel lines at a slope
of m=-1.0 (as the salience of the two targets increases with
increasing  and  decreasing  luminance,  respectively).
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Figure  23.  Averages  of  data  in  Figure 22. The
different response characteristics in Experiment 9
required different averages of the data; matches in
dense  blob  patterns  were  averaged  from  all
subjects  (red  circles);  matches  in  wide  blob
patterns were split into matches that had ignored
item  salience  (“sample1”;  AJ  and  first  run  of
MCV;  dark  blue  circles)  and  matches  that  did
reflect  the  vanishing  item  salience  (“sample2”;
HCN and second run of MCV; light-blue circles).
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Straight  lines  are  indeed  found  in  the  data,  but  at  a
different  slope  (mean  slope  m=-0.61). Thus,  for  equal
salience, luminance variations of the minimum target were
accompanied by about 60% smaller luminance variations
(in the opposite  direction)  of  the maximum target.  This
constant  relationship  of  minimum  and  maximum  target
variations  in  the  dense  blob  raster  is  an  interesting
observation  that  may  require  further  evaluation  in  a
separate  study.  Test  target  modulation  was  strongly
reduced  in  the  sample2 data  from  wide  blob
configurations. 

The constant slopes in Figure 24a had suggested three
modifications which were followed up in later test series
by subject HCN. In one modification, the distractor level
in the test patterns was changed (Fig. 24d),  in the other
two  modifications  the  background  of  reference  patterns
was diminished (Fig. 24e and f).  All test conditions out-

side the remaining test ranges were removed. Tests were
performed  only  on  patterns  with  the  dense  blob  raster.
Even under these modifications,  data curves were about
parallel with similar slopes as in Figure 24a. 

Note  however  that  the  constant  variations  of  DARK
minimum  and  maximum  targets  (parallel  lines  in
Fig. 24a and b) are unexpected.  In Experiment 1, equal-
salient  DARK  minimum  targets  were  scaled  to  the
according background-distractor  luminance  span  (salmin
algorithm 5) which has led to curves with different slopes
in Figure 3. Thus one should also expect that each curve in
Figure 24a would activate the same full salience variation
and curves would hence increase in steepness from the left
to the right instead of running nearly in parallel. Data from
additional  tests,  however,  confirmed  both  reported
findings.  They  showed  nearly  parallel  data  curves  in
various  DARK  minimum  to  DARK  maximum  target
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Figure 24.  Target-to-target variations in Experiment 9. As in the scatter plots before, colors distinguish test series, symbols the data from
wide (open circles) and dense blob patterns (filled circles).  a. Matches in the dense blob raster;  b. matches in the wide blob raster, data
sample1;  c. matches in the wide blob raster, data sample2.  All  these data are taken from Fig.23. Vertical  and horizontal lines indicate
background (continuous) and distractor settings (dashed), and thick oblique lines are regression lines through the data points. d-f. Additional
matches from subject HCN with different background and distractor settings . All matches are represented on nearly parallel lines with slopes
of      m -0.6 indicating that luminance variations in DARK minimum targets were equal-salient to about 60% luminance variation in the
DARK maximum targets. 
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matches  (as  in  Experiment 9;  cf.  Fig. 24d-f)  and  also
scaled matches of DARK minimum targets against each
other for  the according background-distractor  luminance
span (as in Experiment 1). An explanation of this seeming
inconsistency can not yet be given.

Can we predict  the matches in  Figure 24 with simple
salience  algorithms?  The  comparison  of  two  targets  in
different configurations opens, in principle, two ways for
computational  predictions.  We  may  select  the  best
algorithms  for  each  target  type  (for  DARK targets,  for
example,  algorithm 10 for  minimum and algorithm 1 for
maximum  configuration;  cf.  Table 2  column 5)  and
combine  them  to  predict  the  current  matches  (“mixed
combinations”). Or we may assume that salience matches
in a given stimulus are achieved from a common process
with  only one  algorithm (for  example the  constant-ratio
rule) being applied to both targets (“unique algorithms”).
The difference of both procedures is explored in section C.
Here, we will look at certain straight-forward predictions
and test  whether  they can  explain  the  data.  Neither  the
constant-addition (algorithm 1) nor the constant-ratio rules
(algorithm 2), which both had predicted several matches in
section  A,  could  even  weakly  predict  the  present  data.
Table 3, A1/2 and Table 3a, row A list the algorithms with
the  smallest  MSD  values,  and  neither  algorithm  1  nor
algorithm 2 are  listed there.  An exception is  the  salmin
algorithm 5, which produced fairly good MSD values with
the wide sample2 data (Table 3a, A2c). But when we look
at the predictions (Fig. 25d), curves do not resemble the
“drop back” effect in the data. Figure 25 shows predictions
from the best algorithms in Table 3a. Some indeed look

similar to the plots in Figure 24 but none can fully predict
the  experimental  data.  For  example,  algorithm 9  would
also predict one curve with a slope near m=-1 that is seen
in the  wide sample1 data (Fig. 24b) but not in the  dense
data set (Fig. 24a). Predictions from algorithms 8a, 10, and
5, although generally reminding of the wide sample2 data
in Fig. 24c do not return to low salience at high reference
target luminance.

The  test  series  with  BRIGHT targets (Experiment 10)
were mainly performed on dense blob configurations; only
one  subject  had  matched  the  targets  also  in  wide  blob
patterns  (Fig. 26).  Like  with  the  DARK  minimum  and
maximum  target  matches  in  Figure 22,  the  salience
variations  in  reference  and  test  patterns  are  reversed;
decreasing target luminance in the reference pattern and
increasing target luminance in the test pattern would both
increase the salience of the according target. But note the
differences  in  linearity.  The  linear  decrease  of  target
luminance in the reference patterns (Fig. 26a, gray lines) is
matched  by  an  almost  exponential  increase  of  target
luminance in the test patterns (Fig. 26b, red and blue data
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Figure 25. Target-to-target variations in Experiment 9 as predicted by different salience algorithms (Table 1). Curves plot the variations to
be seen in Fig.24 when predicted by “unique” algorithms (see text); a. algorithm 9; b. algorithm 8a; c. algorithm 10; d. algorithm 5. These
predictions provided the best fits to the data but do not resemble all response characteristics seen in Fig.24.

Conclusions from Experiment     9:

Matches  of  DARK minimum vs.  DARK maximum
targets strongly suffered from item salience effects in
wide  blob  arrangements.  –  Salience  variations
received  only  partial  and  singular  fits  (e.g.,
algorithm 9 for matches in dense blob arrangements).
–  Equal-salient  luminance  variations  of  DARK
minimum targets  and  DARK  maximum targets  are
about constantly related at a ratio of 1: 0.6. 
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points).  In  contrast,  the  salience  variations  with  DARK
(minimum and maximum) targets were both about linear
(Fig. 22).  Another  difference  between  BRIGHT  and
DARK targets  is  that  the  BRIGHT target  matches  with
different  blob  densities  were  rather  similar  (Fig. 26b),
whereas  there  have  been  strong  differences,  as  just
discussed, between dense and wide blob densities in the
DARK  target  matches  (Fig. 22).  Apparently,  low  item
salience did not affect the matches of BRIGHT targets as
strongly as it did affect those of DARK targets. The reason
is  simply  the  different  salience  of  background-near
BRIGHT and DARK targets (see also Fig. 13). BRIGHT
targets  were presented on dark background, and DARK
targets  on  bright  background.  Since  the  target  detection
threshold  varies  with  background luminance  (Nothdurft,
2015;  cf.  Stevens,  1961),  small  luminance  differences
might be sufficient to make a (dim) BRIGHT target appear
distinct from the dark background, but larger luminance
differences are  needed to make a  (bright)  DARK target
appear similarly distinct on the bright background. As a
matter  of  fact,  the  reference  targets  at  the  three  lowest
luminance settings in Figure 26a (label 2) were all more
salient than the reference targets at the corresponding three
highest  luminance  settings  in  Figure 22.  To  see  and
measure  item  salience  effects  in  the  present  task,  the
BRIGHT reference targets should have even more closely
approached background luminance.

For MSD analysis, the data from dense and wide blob
configurations were averaged and curves fitted by various
algorithms.  The  best  result  (smallest  MSD  values)  was
obtained with algorithm [2]3 on the power of luminance,
the predictions of which are plotted into the figure (gray).
(Details of these predictions will be given in section C.)

The two-dimensional scatter plots of salience-matched
reference  and  test  targets  (Fig. 27)  show,  for  the  dense
blob  spacing  (Fig. 27c),  several  similar  curves  that  are
shifted in  x due to the different distractor settings in the
reference patterns (dashed lines).  Different to  Figure 24,
discrimination salience now increases from the right to the
left, that is, from high luminance values of the reference
target  (low  discrimination  salience)  to  low  luminance
values (maximal discrimination salience).  The according
values of the matched test targets indicate a corresponding
increase of salience from low to high luminance values.
Interestingly,  all  curves  remain  separated,  which  is  not
quite  what  we  should  expect  from  the  experiments  in
section A. There, the salmin algorithm has made the best
predictions  of  both  BRIGHT  maximum  and  BRIGHT
minimum target  matches  (Table 2,  E5  and  G5).  In  this
algorithm,  luminance  variations  are  normalized  to  the
luminance  span  of  background  and  distractors.  In

3  For the brevity of presentation, brackets around an algorithm number 
indicate that this algorithm was performed on the power of luminance 
(exponent x=0.33). The convention is introduced in section C.
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Figure  26.  Equal-salience  matches  of  BRIGHT
minimum  and  maximum  targets  (Experiment  10).
Symbols  and  presentation  as  in  previous  figures
(e.g.,  Fig.17);  reference  pattern  settings  in  black,
matched  test  pattern  settings  in  color.  Two
predictions are shown by gray and thin black lines,
respectively (Table 2). Note that to match the linear
luminance  variations  of  the  reference  target,  test
target  luminance  had  to  be  increased  nonlinearly.
Numbers  are  referred  to  in  the  text.  For  the
nomenclature of alg[2] see footnote 3.
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Experiment 10 that span was constant in all test patterns,
and the variations in reference patterns should have been
lost due to the normalization. Thus, if the matches were
indeed based on the  salmin algorithm, the different data
curves in Figure 26b should all look similar and the curves
in Figure 27 should all  intersect  in  one point (same test
target  luminance  at  low  reference  target  luminance;  cf.
Fig. 28d). This is certainly not the case with the data from
dense  blob  patterns  (Fig. 27a).  In  these  patterns,
apparently,  a  large  difference  of  a  BRIGHT  minimum
target to its little brighter distractors (Fig. 26, labels 2) did
not  make  the  target  as  salient  as  the  proportionally
identical  contrast  of  the  same  target  to  much  brighter
distractors (Fig. 26, labels 1). This was different in wide
blob  configurations,  for  which  the  different  matching
curves  in  Figure 26  look  much  more  similar  (blue

symbols) and data points of maximal target salience tend
to collapse (Fig. 27b, data points on the left-hand side). 

Predictions  were  again  made  along  two  lines  of
computations,  using  mixed  combinations of  algorithms
that made good predictions of earlier matches of the two
targets (Table 2, E5 and G5), and  unique algorithms that
were  applied  to  both  target  types.  Only few algorithms
provided reasonable predictions of the data (Table 3, C1-
D2);  these  curves  are  shown  in  Figure 28  (for  more
details, see section C). 
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Conclusions from Experiment     10:

BRIGHT  minimum  vs.  maximum  target  matches
received  several  good  fits  including  a  particularly
good one from algorithm [2]  (constant  ratio  on the
power|0.33 of luminance)

Figure  27.  Target-to-target  variations  in
Experiment 10, for matches from a. dense and  b.
wide blob configurations. Note that curves remain
separated in  (a) but tend to  collapse in the left-
hand data points of (b). See text for discussion.

Figure 28.  Various predictions of target-to-target variations in Experiment 10. Curves show the expected variations in Fig.27 if salience
were computed by the indicated algorithms from Table 1; a. “mixed combination” of algorithms 5 and 10; b. algorithm 10; c. algorithm [2]
applied to the power of luminance;  d. algorithm 5 (for details,  see text).  These algorithms had produced the closest  predictions of the
experimental data (cf. Table 3, C1-D2). 
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Experiment 11: 
Matches of  maximum targets  with different  contrast
polarity (test series blocks W and WB)

Hints for reading: The following two experiments are
important  as  they  demonstrate  the  role  of  power-
transforms  (Steven’s  brightness  law)  in  certain
matches.

In  Experiment 11,  BRIGHT  targets  were  matched  to
DARK targets, and vice versa; both targets were presented
in maximum target configurations.

Stimuli

All patterns in test series block  W had similar distractor
luminance  for  reference  and  test  patterns  but  different
backgrounds (Fig. 29). Background luminance was high to
let  distractors  appear  dark,  or  low  to  let  the  same
distractors appear bright. The salience of DARK targets in
the  reference  patterns  had  to  be  matched  with  that  of
BRIGHT targets  in  the  test  patterns.  Block  W included
seven test series that were presented in four runs each with
9  test  conditions.  All  matches  were  performed  on  the
dense  blob  raster.  At  a  later  stage  of  the  project  two
additional test series were designed; one covered a slightly
reduced collection of previous test series block  W (series
WB1), the other contained a set of stimulus conditions in
which  these  matches  were  reversed,  i.e.  BRIGHT
reference  targets  were  matched  by  DARK  test  targets
(series  WB2). These two new test series included 30 and
26 test conditions, respectively. In every run, all stimulus
conditions were presented twice, in pseudo random order,
with reference and test patterns presented on both sides of
the screen. Every test series was run by three subjects. Test
series block W was part of the main study and run by the
three  subjects  that  had  also  performed  most  other
experiments  of  this  paper.  For  the  additional  test  series
WB1 and  WB2,  two of these subjects  were replaced  by
new observers.

Results and Discussion

The stimulus conditions of test series block W were the
simplest  possible  combinations  of  DARK and BRIGHT
targets  in  maximum  conditions,  since  distractors  were

identical  in  the  two  patterns.  Backgrounds  had  to  be
different, because they defined the luminance polarity and
apparent lightness of items.

Figure 29 shows the matching results for a number of
test series in block  W, together with two straight-forward
predictions (gray). With homogeneous blob arrays without
distractors  it  was  seen  (Nothdurft,  2015)  that  dark  and
bright  blobs  at  low and  medium contrast  appear  equal-
salient, when their luminance difference to background is
the same. If backgrounds differ, however, salience is better
related to differences in the power of luminance.  If that
would similarly hold for the salience matches of targets
among identical distractors in Experiment 11, the adjusted
luminance settings in Figure 29 should have fallen upon
the gray continuous lines indicating predictions from the
constant-addition and constant-ratio rules (here identical).
This is clearly not the case. If, on the other hand, equal-
salient  matches  were  obtained  for  an  equal  Michelson
contrast  of  targets  to  distractors,  as  reported  in  other
studies (Dannemiller & Stephens, 2001), the data should
have  fallen  upon  the  dashed  gray  lines  indicating
predictions  from  the  Michelson  contrast  (algorithm  3).
While the fit of these latter curves to the data was better,
quite  a  few data  points  deviated  from both  predictions,
irrespective of whether distractor luminance was high or
low  and  whether  distractor-to-background  contrast  was
similar or largely different in the two patterns.

An  explanation  arises  from  the  scatter  plots  in
Figure 30,  in  which  the  salience-matched  target  settings
are  plotted  against  each  other  (Fig. 30a,  filled  symbols;
matches at and outside the monitor limits are marked with
gray fillings). The various data curves do not run strictly
perpendicular  to  the  line  of  identity  (dotted)  but  are
slightly  bent  upwards  indicating  that  the  luminance
increase with the BRIGHT test targets (plotted upwards)
was larger than the according luminance decrease of the
equal-salient DARK reference targets (plotted from right
to left), as already seen in Figure 29. The general course of
data  curves  becomes  more  obvious  when  the  test
conditions  are  exchanged.  In  principle,  equal-salience
matches should be exchangeable, that is salience matches
of test patterns to reference patterns should be similar to
salience matches of reference patterns to test patterns. 

Reversed  matching  of  test  series  block  W was  not
included in the original test series and could not later be
added, since two subjects were not anymore available at
this stage of analysis. In Figure 30a, instead, the data were
mirrored (open symbols), as if reference and test settings

Published  online: 6-Jun-2015       © christoph.nothdurft@vpl-goettingen.de                                                                                 ISSN:2364-3641

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           43

were  exchanged.  In  Figure 30b,  however,  data  from
similar matches of the original test conditions (now test
series  WB1)  and  of  new  test  conditions  in  reversed
matches  (test  series  WB2) are  shown;  these  tests  were
performed by new subjects (and the author) at a later stage
of the  project.  Both  graphs in  Figure 30 suggest  a  bent
course  of  data  curves  as  it  would  be  obtained  when
parameter  variations  are  not  linear  but  follow  a  power
function.  For  luminance,  exponents  of  sensory  power
functions  are  reported  to  lie  between  1.2  (lightness  in
reflections from gray paper) and 0.33 (brightness of a 5°
target; Stevens, 1961); the according variations of equal
target-to-distractor differences are schematically shown in
Figure 31. Brightness sensation for a point source target
(perhaps  more  comparable  to  the  targets  in  the  present
study) follows a power function with the exponent  x=0.5
(Stevens,  1961).  An  exponent  of  x=1.0 represents  the
linear case.

If sensitivity would be linear and identical increments
and decrements of targets from the distractors would be
seen  as  equally  salient,  the  scatter  plots  in  Figure  30
should reveal straight lines at slopes m=-1 (Fig. 31a). But
if sensitivity would follow a power function of luminance,
equal  sensations  of  increments  and  decrements  would
correspond  to  different  luminance  intervals  and  data
curves of  equal-salient  targets  should be bent similar  to
those in Figure 31b and c. A rather good fit of the data in
Figure 29 is achieved with the power transform (exponent
x=0.5) of luminance.

How would  these  curves  change  when  distractors  in
reference  and  test  patterns  are  not  identical?  Additional
test series (not reported here) that included test conditions
with  different distractor  settings  revealed reasonable  fits
for  constant-addition  on  power-transformed  luminance
data (as schematically predicted in Fig. 31d). In extreme
combinations, however, such as low distractor contrast in
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Figure 29.  Examples of equal-salience matches of BRIGHT to DARK maximum targets in Experiment 11 (test series W);  symbols and
presentation as in Fig.3. Reference pattern settings (black) and matched test pattern settings (color) are plotted side by side; only dense blob
configurations were tested (red).  Distractors in the two patterns had the same luminance (aside from minor stray-light effects from the
different  backgrounds)  but  looked  differently,  dark  or  bright.  Three  predictions  are  shown  with  the  data;  constant  addition  (“add”;
continuous gray lines) equivalent to equal Weber contrast in these tests; equal Michelson contrast (dashed gray lines); and equal differences
in the power of luminance, exponent x=0.5 (“Stevens”; thin black lines). Matches are not well predicted from Weber or Michelson contrast.
Dotted black lines indicate monitor limitations. 
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one  pattern  and  high  distractor  contrast  in  the  other,
matches could deviate from these predictions, and no final
conclusions  can  yet  be made.  A preliminary analysis  of
these deviations, however, suggests that they might be also
affected by brightness induction effects (cf. Blakeslee &
McCourt, 2013; Kingdom, 2011).

Thus,  despite  the different  findings for  equal-salience
matches with other stimulus combinations, equal-salience
matches  of  BRIGHT and  DARK  maximum  targets  are
closely  predicted  by  constant  differences  of  power-
transformed  target  and  distractor  luminance  settings.
According to Stevens (1961), an exponent of x=0.5 would
be adequate to describe brightness perception, and good
matches were indeed found for power functions with this
exponent (cf. black line predictions in Fig. 29).

Experiment 12: 
Matches  of  minimum  and  maximum  targets  across
different luminance polarities (test series block WM)

The observations of Experiment 11 suggested a new block
of test series that were only partly included in the original
test collection. These test series were supposed to combine
reference targets in  minimum configuration with different
categories  of  test  targets,  when  reference  and  test
distractors  were  identical.  Of  the  possible  combinations
only matches of (similar) minimum and maximum targets
had been tested in Experiments 9 and 10. 

Stimuli

The  four  possible  combinations  of  minimum  and
maximum  targets  (Fig. 32)  were  tested  in  four
experimental runs, each containing two test series with 5
and  7  test  conditions,  respectively.  In  all  conditions,
distractors in the two patterns were identical. All matches
were performed with dense and wide blob configurations.
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Figure 30. Target-to-target variations in Experiment 11 (cross-polarity matches). a. Test series block W. Matches of BRIGHT test targets to
DARK reference targets (filled circles; upper left) among identical distractors; the reversed conditions (BRIGHT reference targets, DARK
test targets) are mirrored from these data (open squares; lower right).  b. Test series block  WB. In a later repetition of test series  W both
matching directions were tested; DARK reference and BRIGHT test targets (upper left), and BRIGHT reference with DARK test targets
(lower right). Curves suggest a continuous transition of curves, in which the luminance difference of BRIGHT targets to distractors increases
faster than that of equal-salient DARK targets. Colors distinguish different test series; matches were performed only on dense blob patterns.
Dotted lines indicate identity (i.e., zero increments and decrements from distractors) and monitor limits, respectively. Gray data points in (a)
are invalid because of these limits and are not mirrored. Data points within brackets were not included in test series WB1 in (b).

Conclusions from Experiment     11:

Cross-polarity  matches  of  DARK  and  BRIGHT
maximum targets among identical distractors (dark or
bright) were best predicted by constant differences on
a power function of luminance (exponents x=0.5 and
x=0.33).
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Experimental  procedures  were  identical  to  those  in  the
previous  experiments;  test  targets  had  to  be  adjusted  to
appear equal-salient to the reference target. Matches were
performed  by  three  subjects,  two  of  which  had  not
contributed to the main pool of experiments of this study.

Results and Discussion

The  simple  stimulus  schemes  in  Figure 32  give  an
overview of how these various matches may be looked at.
When  DARK  targets  in  minimum  configuration  are
combined with DARK targets in maximum configuration
(WM1),  or  BRIGHT targets  in  minimum with  BRIGHT
targets  in  maximum configuration  (WM4),  both  patterns
may have the same background, and target salience would
increase  with  luminance  changes  in  opposite  directions.
Both combinations were already tested in Experiments 9
and 10 but with different distractors. 

The  remaining  two  combinations,  DARK  targets  in
minimum configuration combined with BRIGHT targets in
maximum  configuration  (WM2),  or  BRIGHT targets  in
minimum configuration combined with DARK targets in
maximum configuration (WM3) were not yet tested but the
identical distractors will create a situation in which targets
are  identical  and  have  to  be  matched  among  identical
distractors. This is, in principle, an identity match which
might only be “disturbed” by the different backgrounds on
which  distractors  and  target  are  presented.  It  would  be
interesting to see if matches indeed reflect these identities

or are strongly affected by the different backgrounds and
hence the different lightness of items.

Matches are shown as scatter plots in Figure 33. In test
series  WM1  and  WM4  (Fig. 33a),  data  points  indeed
follow  the  predictions  of  constant  addition  on  power-
transformed  luminance  scales  (gray  curves)  and  only
deviate  from  these  curves  for  matches  close  to  the
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Figure 31. Schematic drawing of target variations in Experiment 11. a. Equal increments and decrements when luminance scaling is linear.
b-c. Nonlinear variations when increments and decrements are equal in the power of luminance (different exponents). Curves in Fig.30 are
better described by (b) or (c) than by (a). d. For dissimilar distractor settings in reference and test patterns (open circles) curves are shifted
but remain their principle form.

Figure  32.  Schematic  drawing  of  target  conditions. Background
luminance  is  indicated  by  short  horizontal  lines,  distractor
luminance by open circles, and target luminance by arrows (pointing
into the direction of increasing discrimination salience). The scheme
reveals principle similarities in the various combinations of DARK
(“D”)  and  BRIGHT  targets  (“B”)  in  maximum  (“max”)  and
minimum (“min”) configuration. These combinations are tested in
four test series (WM1-WM4) in Experiment 12.
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luminance  limits  of  the  monitor  which  had  served  as
background  settings  of  the  various  targets  (continuous
black  lines)  or  at  high  target-to-distractor  contrast  (data
points far away from the mid line), where discrimination
salience might have interfered with low item salience in
the wide blob patterns (open symbols). As expected, the
curves look by and large similar to the curves obtained for
matches  of  DARK  and  BRIGHT  maximum  targets  in
Figure 30.  Quite  differently,  but  also  as  expected,  most
matches in test series WM2 and WM3 (Fig. 33b) fell close
to or exactly upon the identity line (gray line), that is, they
were matched identical, despite the different backgrounds
and  despite  the  different  target  types  that  were  here
combined.  Again,  there  were deviations,  particularly for
matches  in  wide  blob  configurations  (open  symbols),
when  DARK  minimum  targets  approached  the  bright
background and item salience vanished (data points on the
right-hand  side).  Altogether,  thus,  the  findings  from

Experiment 12  confirm  and  generalize  the  observations
from the previous experiments. 

There are additional deviations from the expectations in
Figure 33, even for matches in dense blob configurations.
These  deviations  are  likely  caused  by  the  different
background  settings  in  the  two  patterns.  Note  that  all
curves start close to the expected prediction lines for small
target-to-distractor  contrast  (data  points  near  the
intersection of the according distractor settings marked by
dashed lines in the same color). While some data curves
remain near these lines with increasing target-to-distractor
contrast,  others  deviate  from  them.  This  is  particularly
obvious for  the black and blue data  point  series.  In the
previous  experiments,  only  DARK  maximum  target
matches  were  (largely)  independent  from  background,
whereas  all  BRIGHT  target  matches  were  scaled
(normalized)  to  the  according  background-distractor
luminance span. 
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Figure  33.  Scatter  plots  of  target-to-target  variations  in  Experiment 12. a. Target  variations  in  opposite  direction  (increments  versus
decrements);  b. identical target variations.  Curves plot  equal-salience matches of the target combinations sketched in  Fig.32.  For each
combination, two test series were performed (different colors) on dense (filled circles) and wide blob patterns (open circles); the according
distractor levels are shown as dashed lines in the same colors. Backgrounds were set to 5.5 and 68  cd/m2, respectively (continuous black
lines). For target variations in opposite directions (a), equal-salience matches tend to follow a power function with an exponent near x=0.33
(fitted gray curves). For similar target variations (b), data indeed reveal identity matches (fitted gray curves), despite the different lightness of
targets. Only when target-distractor differences are increased, most curves deviate from the initial fits.
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Experiment 13: 
Confirmation  of  the  maximum-minimum  salience
difference (test series block WZ)

Experiment 12 (and also Experiments 9 and 10) included
the  maximum-minimum  paradigm  described  in  the
Introduction (Fig. 1). The darkest or brightest item among
less dark or less bright distractors (the maximum target) is
more salient than a single distractor among many of these
targets  (the  minimum target  condition;  cf.  Nothdurft,
2006a). Thus, a simple exchange of the luminance settings
of  targets  and  distractors  (which  does,  of  course,  not
change  their  luminance  difference)  should  affect  the
salience  of  the  target.  To  directly  measure  the  salience
difference in the testing paradigms of the present study,
test distractors in Experiment 13 were given the luminance
settings of reference targets, on identical backgrounds, and
test targets were then adjusted for equal salience. If there
were no difference and salience were simply based on the
(identical)  luminance  contrast  of  targets  and  distractors,
the salience-matched test targets should be adjusted to the
same luminance settings as the reference distractors so that
luminance settings of targets and distractors were simply
exchanged.

Stimuli

This  last  experiment  included  two  test  series,  one  for
DARK  and  one  for  BRIGHT  targets,  each  with  eight
stimulus combinations. Three subjects served as observers;
two  of  them  had  not  been  involved  in  the  main  data
collection of the study.

Results and Discussion

Figure 34 shows the luminance settings of reference and
matched  test  patterns;  reference  patterns  represent  the
minimum  target  configuration.  In  both  test  series,
reference  distractors  (open  black  circles)  were  held
constant and reference targets (filled black circles) were
systematically varied between background and distractor
settings. (In the figures, these conditions are shifted so that
reference  target  settings  fall  upon  a  straight  line.)  Test
patterns  were  presented  on  the  same backgrounds,  with
distractor  and  target  luminance  settings  virtually
exchanged.  That  is,  test  distractors  (green  open  circles)
were set to the luminance level of reference targets (black
circles), and test targets (to be adjusted) were initially set
to a luminance just below (DARK targets) or above that of
test distractors (BRIGHT targets).  Blue circles  represent
the  matches  obtained  with  the  wide  blob  raster,  red
symbols  those  with  the  dense  blob  raster.  If  salience
computations were symmetrical, all test target data should
have  fallen  upon  the  symbols  of  reference  distractors,
which  obviously  was  not  the  case.  Test  targets  were
generally  matched  to  smaller  target-to-distractor
differences than those in the according reference patterns.
Thus,  to  make  maximum and  minimum targets  equally
salient,  the  target-to-distractor  contrast  of  the  maximum
targets had to be decreased. In turn, if the contrast were
not decreased but set to the (larger) luminance difference
in the reference pattern, maximum targets had been more
salient  than  the  minimum targets,  which  is,  in  fact,  the
description of the maximum-minimum paradigm.

 It is interesting to look at how the test target settings
deviate from the “symmetrical” case, in which target and
distractor luminance settings were simply exchanged. With
increasing  target-to-distractor  contrast  in  the  reference
patterns  (i.e.,  moving  from the  right  to  the  left  in  the
graphs  of  in  Fig. 34),  test  targets  first  follow  virtual
straight  lines  at  a  smaller  target-to-distractor  luminance
difference than that in the accompanying reference pattern.
Thus,  with  increasing  target-to-distractor  contrast,  the
deviations from the symmetrical case increase. For DARK
targets, the matches in wide (blue symbols) and dense blob
patterns (red symbols) were initially similar; for BRIGHT
targets,  however,  these  matches  differed.  When  the
luminance  difference  of  target  and  distractors  in  the
reference patterns is further increased (data points towards
the  left),  reference  targets  will  finally  approach
background  luminance  and  item  salience in  wide  blob
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Conclusions from Experiment     12:

For  small  to  medium  luminance  variations,  equal-
salient minimum and maximum target matches among
identical  distractors  follow  the  same  general  rules,
independent of the apparent brightness and lightness
of the targets. Targets that vary in opposite directions
(increments  and  decrements)  follow  the  power
function of luminance. Targets that vary in the same
direction  (both  increments  or  both  decrements)
represent identity matches.
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configurations  will  decrease.  Here,  different  response
variations  are  seen  with  the  DARK  and  the  BRIGHT
targets.  With  DARK targets  in  wide  configurations,  the
matched  test  target-to-distractor  contrast  was  further
decreased  indicating  a  strong  and  over-proportional
reduction of target salience; in dense configurations, the
matched  target-to-distractor  contrast  remained  about
constant  and  only  the  last  matches  with  very  bright
reference  targets  (near  background  level)  were  a  little
uncertain (cf. the larger s.e.m. in these conditions). With
BRIGHT  targets,  however,  item  salience  of  reference
targets  near  background  luminance  was  not  so  strongly
reduced and salience-matches continue to follow the initial
course of reduced contrast (blue line). Neither in wide nor
in  dense  configurations  did  the  test  target  matches
systematically approach  the  test  distractor  settings,  as  it

was the case with DARK targets. We have seen a similar
difference between DARK and BRIGHT minimum targets
in  Experiments  9  and 10  (Figs. 23  and 26).  Due to  the
different background luminance in these patterns and the
dependence of detection threshold on luminance, BRIGHT
reference targets close to (the dark) background suffer less
from  diminished  item  salience  than  DARK  reference
targets  close  to  (the  bright)  background.  BRIGHT
reference  targets  had  to  be  even  closer  to  background
luminance to  evoke a similar item salience reduction as
seen with DARK targets. 

The data are re-plotted in the scatter plot of Figure 35.
Note  that  the  sequence  of  test  conditions  with  DARK
targets is then reversed (test series WZ1). Reference targets
and test distractors are located on the oblique mid lines
(dotted lines); for strictly symmetrical matches, test targets
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Figure 34. Test of the maximum-minimum paradigm (Experiment 13). In two test series, one with DARK and one with BRIGHT targets, the
different salience of targets in maximum or minimum configuration was measured. In the original paradigm, target and distractor luminance
settings are simply exchanged (on identical backgrounds); the target in the maximum configuration appears then more salient than the target
in the minimum configuration (cf. Fig.1). In experiment, test distractor (green circles) and reference target levels (filled black circles) were
set identical and test targets in the maximum configuration (blue and red circles) were adjusted to equal the salience of the reference targets
in the minimum configuration. Backgrounds (horizontal black lines) were constant and identical. Test conditions are shifted in  x so that
reference target  and  test  distractor  variations line up.  Test  targets  were always adjusted to  smaller  target-to-distractor  differences than
reference targets, indicating that the latter were less salient than a maximum target with exchanged luminance settings and the same target-to-
distractor  luminance difference  in  the  original  paradigm condition.  Dashed  black lines  emphasize  initial  deviations  from hypothetical
symmetry. 
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should  have  fallen  upon  the  green  lines.  Red  and  blue
lines are regression lines through the data (in series  WZ1
without the right-most red data point). It is interesting to
compare the red line obtained for DARK targets (m=0.42)
with  the  parallel  lines  obtained  in  the  related  task  of
Experiment 9  (Fig. 24a).  In  both  experiments,  DARK
minimum  and  maximum  targets  were  matched  for
salience, but test conditions were slightly different. In both
test  series  (Fig. 24a  and  Fig. 35)  reference  target
luminance was systematically varied between the constant
reference distractor settings (dashed vertical lines on the
left)  and  the  constant  background  (continuous  vertical
lines on the right). But while test distractors were constant
in  Figure 24a  (horizontal  dashed  line),  they  varied
between  conditions  and  fell  upon  the  dotted  line  in
Figure 35.  If  Figure 35  were  rotated  so  that  the  test
distractor settings become similar to those in Figure 24a,
the  tilted  dotted  line  (m=1.0) would  turn  horizontal
(m=0.0) and the fitted red line (m=0.42) into a line  similar
to  the  lines  in  Figure 24a  (m=0.42–1.0=-0.58).  Both
experiments  thus  reveal  a  similar  ratio  of  equal-salient
target  variations  of  DARK  minimum  and  maximum

targets.  The  ratio  is  not  1  but  about  0.6,  that  is,  the
luminance variation  of  a  DARK minimum target  would
correspond in salience to only about 3/5 of that luminance
variation in the matched DARK maximum target.

A  similar  comparison  could  be  made  for  BRIGHT
minimum  and  maximum  targets.  But  note  that  the
corresponding  target  variations  in  Figure 27  are  not
linearly related (see also Fig. 26) and straight regression
lines would only fit subsections of each curve, as is also
the case with the regression lines in Figure 35 (BRIGHT
targets, red and blue lines). 

How  would  the  best  predictions  from Experiments 9
and 10 fit the new data from Experiment 13? The unique
algorithms that  had made best  predictions  in  the  earlier
experiments were algorithms 8a and 9, for DARK targets
in  wide (sample2  data) and  dense blob  configurations,
respectively (Table 3a,  A2a and  A2c),  and  algorithm 10
and [2] for BRIGHT targets (Table 3, C2 and D2). These
predictions are superimposed in Figure 35 (gray and thin
black lines). Two of them fit the data quite well, but the
other two made partly wrong predictions. According to the
predictions from algorithm 9, for example, DARK targets
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Figure 35. Target-to-target variations in Experiment 13. a. DARK targets; b. BRIGHT targets. Data re-plotted from Fig.34; constant settings
are indicated by vertical and horizontal lines. (Note that the sequence of test conditions in series WZ1 is here reversed compared to Fig.34).
Reference targets and test distractors lie on the oblique midline (dotted); in the case of perfect symmetry, test targets should have fallen upon
the green lines. Deviations (red and blue data points) show the maximum-minimum paradigm. Red and blue lines are regression lines
through the data (the rightmost red data point in WZ1 was not included); their slopes are given aside. Thick gray and thin black curves show
different predictions of the data (see text).
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at  intermediate  target-to-distractor  contrast  had  to  be
adjusted  even  below the  reference  distractor  luminance,
indicating that maximum targets at these conditions were
less salient  than  minimum  targets  with  exchanged
luminance  settings,  which  clearly  was  not  the  case.
Algorithm 10 suggests that the loss of item salience for
BRIGHT targets  near  the  background  should  be  much
stronger than found. 

Discussion of section B

Hints  for  reading: The  Discussion  summarizes  the
major findings of section B: (1) the advantages of using
a  constant  “salience  meter”  for  target  comparisons;
(2) the occurrence of different salience aspects such as
discrimination salience and item salience; and (3) the
important role of power functions in cross-polarity target
matches.  Discussion  ends  with  an  illustration  of  the
maximum-minimum  paradigm  in  different  blob
densities.

While the experiments of section A had identified rules of
how targets must be changed to remain their salience when
background  or  distractors  change,  the  experiments  of
section B help to relate the salience of different targets to
another.  Some  observations  were  confirmatory  and
underlined the validity of  earlier  conclusions;  others  are
new and provide information that could not be concluded
from the previous section. 

Perhaps  the  most  important  advantage  of  these  new
experiments  was  the  fact  that  they  provided  an  in-
dependent measure of salience. By using fixed luminance
settings  for  the  test  pattern,  not  only  the  salience  of
different targets could be directly compared but also the
measures  of  different  reference  patterns,  even  from
different test runs, could all be related to the same measure
and thus be virtually compared. Another important finding
came from target matches across luminance polarities, i.e.
from DARK and BRIGHT targets  among identical  (but
differently looking) distractors. Are these matches solely

based on the luminance settings of targets and distractors
or  do  they also  depend  on  the  perceived  lightness  and
brightness  of  items  (cf.  Maertens  &  Wichmann,  2013;
Moore & Brown, 2001)? While certain matches, like those
in Experiment 12, seemed to reveal little influence from
perceptual categories but reflected the identical luminance
settings,  at  least  for  small  differences  of  targets  and
distractors  (cf.  Fig. 33),  the  luminance  settings  of  the
backgrounds  (which  had  caused  the  percept  of  dark  or
bright stimuli) turned out to be essential in other matches.
For example, if the backgrounds in Experiment 11 had not
been different but had both been either dark or bright, the
resulting  matches  of  minimum  and  maximum  targets
would have followed different rules (cf. Exp. 9-10) than
the performed matches of DARK and BRIGHT maximum
targets. A third major observation from the experiments in
section  B  is  the  important  role  of  power-transforms in
matches of targets at different luminance polarity. Matches
of BRIGHT and DARK targets could largely be predicted
when luminance scales were power-transformed with an
exponent  x=0.5,  whereas  most  predictions  on  a  linear
scale  could  not  explain  the  data.  The  role  of  power-
transforms in salience computation was less obvious in the
previous matching experiments of this study. And last not
least, salience variations in DARK minimum targets could
be related to those in DARK maximum targets (Exp. 9 and
13).  Matches  revealed  a  systematic  reduction  to  about
60%, that is, luminance variations of the minimum target
would be equal-salient to smaller luminance variations of
the maximum target.

In addition to these new observations, the experiments
of  section  B  have  confirmed  major  observations  from
section  A.  Matches  of  DARK  or  BRIGHT  maximum
targets  with  the  new  salience  measure  (Exp. 7  and  8)
revealed the same salience “rules” as Experiments 1 and 4.
And  the  observation  that  target  salience  is  based  on  a
combination  of  discrimination  and  item salience,  which
may change independently in certain stimuli, was strongly
confirmed in Experiment 9. When the salience of a DARK
target  in  minimum  configuration  was  compared  with  a
fixed  salience  meter  (i.e.,  with  constant  test  pattern
settings),  salience  did  not  continuously  increase  with
increasing  target-to-distractor  differences  but  rapidly
diminished  again  when  target  luminance  approached
background luminance.  It  was observed  (and explained)
that item salience effects should not occur with the dense
blob raster and should be less pronounced with BRIGHT
targets on a darker background. 
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Conclusions from Experiment     13:

The  maximum-minimum  paradigm was  confirmed;
minimum  targets  are  less  salient  than  maximum
targets  with  exchanged  luminance  settings.  Equal-
salient  luminance  variations  of  DARK  minimum
targets  corresponded  to  about  60%  luminance
variations in equal-salient DARK maximum targets.
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Different aspects of salience: 
item and discrimination salience

The  observation  itself  is  not  surprising;  a  target  that  is
barely visible cannot be very salient. But it underlines the
different  aspects  of  target  salience  that  must  be
distinguished. Item salience makes a target stand out from
background  and  discrimination  salience makes  a  target
stand  out  from  other  items.  In  maximum  target
configurations the item salience of a target is always larger
than  the  item salience  of  distractors,  and  it  is  therefore
mainly the  discrimination  salience  that  makes the  target
more  conspicuous  than  other  objects  in  the  scene.  The
item salience of targets in such configurations can only be
low when the item salience of distractors is even lower. 

For  targets  in  minimum  configurations,  however,  or
targets among distractors of opposite luminance polarity,
the two salience components may vary independently, and
a target with high discrimination salience that would be
potentially  highly  conspicuous  among  the  distractors,
could  nevertheless  display  very  low  item  salience  and
hence might not be conspicuous at all. To my knowledge
such a distinction of different salience aspects, although
important,  has  not  yet  systematically  been  made  in  the
literature.  It  was  reported  (but  not  named)  in  Nothdurft
(2000)  where  matches  of  indistinguishable  targets  (zero
discrimination  salience)  did  not  measure  zero  salience.
The distinction of different salience components may help
to  solve  hitherto  open  questions  or  contradictions  in
salience  research.  For  example,  a  target  embedded  in
identical  targets  is  not  entirely  non-salient,  although
discrimination  salience  would  be  zero.  An  important
aspect of item and discrimination salience is the distance
to  other  objects.  If  accompanying  items  are  presented
closely  to  the  target,  the  distinction  from  background
vanishes and discrimination salience is becoming the most
important aspect of salience. In agreement with this view,
item salience was so far mainly noticed in sparse target
and distractor arrangements (cf. Nothdurft, 2000). 
 

Salience matches across luminance polarities

The combination of DARK and BRIGHT targets (Exp. 11
and 12) cannot be obtained from illumination changes on
purely reflective surfaces, and thus there is no “natural”
algorithm that could be expected to predict equal-salience

matches of these targets. Another starting point for equal
salience  computations  of  DARK  and  BRIGHT  targets
would  be  Weber’s  law  that  the  just  discriminable
luminance difference depends on background luminance
(ΔI/I = constant),  no  matter  whether  the  difference  is
added  or  subtracted.  For  supra-threshold  differences,
however,  this  rule  is  often  violated.  Dannemiller  and
Stephens  (2001),  for  example,  found  that  children  rate
BRIGHT targets as less conspicuous than DARK targets
with  the  same  Weber  contrast  (ΔI/I)  on  identical
backgrounds, and concluded that the Michelson contrast
(ΔI/(I+ΔI))  might  be  better  suited  to  predict  equal
salience4.  In  the  present  study  (Exp.  11),  matching
performance was better related to the power of luminance
and the Michelson contrast also produced only partly good
predictions  of  some  matches  (cf.  Fig. 29;  Table 4).
However,  when item salience  rather  than  discrimination
salience  is  matched  (as  in  the  accompanying  study  on
uniform blob arrays;  Nothdurft,  2015), equal salience is
not  predicted  by  the  Michelson  contrast,  but  by  the
constant-ratio  rule  (Weber  contrast).  Dannemiller  and
Stephens  (2001),  too,  found  ratings  congruent  with  the
Weber  contrast  for  small  luminance  differences.
Altogether, this leaves us with apparently heterogeneous
and multiple salience computation rules. The item salience
of dark and bright blob arrays follows the constant-ratio
rule  (Weber  contrast)  when  blobs  are  presented  on  the
same  backgrounds.  But  when  presented  on  different
backgrounds,  equal-salience  is  better  described  by
constant  differences  on  a  power-transformed  luminance
scale  (Nothdurft,  2015)  as  in  Stevens’  brightness  law
(Stevens,  1961;  Rudd  &  Popa,  2007)).    The
discrimination  salience of  DARK  and  BRIGHT  blobs
among  identical  dark  and  bright  distractors,  however,
clearly follows the power of luminance (Fig. 30) and only
partly the Michelson  contrast  (Dannemiller  & Stephens,
2001). 

Michelson contrast and the power function of Steven’s
brightness  law  (exponent  x=0.33) show  a  principally
similar course with increasing luminance differences but
differed in the fits of Figure 29. According to Table 4, the
supra-threshold  matching  performance  in  Experiment 11
was better predicted by Steven’s brightness law (algorithm
[1])  than  by the  Michelson  contrast  (algorithm 3).  This
was also the case for power transforms with the exponent

4  With ΔI=(Imax-Imin)/2 and I=Imin, their definition of Michelson contrast 

is equivalent to the definition used here, (Imax-Imin)/(Imax+Imin); see, e.g.,

Peli, 1990).
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x=0.5 (cf. the different fits in Fig. 29).  Since bright and
dark targets  on the same background cannot have equal
brightness, it is interesting to note that Steven’s brightness
law  thus  also  holds  for  equal-salience  matches  across
contrast polarities. 

The maximum-minimum paradigm

All matches of  minimum and maximum targets  (Exp. 9,
10, and 13) confirmed the maximum-minimum paradigm
(cf. Fig. 1). In this paradigm a single item with strongest
item  salience  (i.e.,  a  target  in  maximum configuration)
stands out more strongly from less salient distractors than
a single less salient distractor (i.e.,  a target in minimum
configuration)  stands  out  from  many  target  items
(Nothdurft, 2006a). In the originally proposal, target and
distractor  luminance  settings  were  simply  exchanged
between the two conditions. In Experiment 13 designed to
match the  two  targets  in  salience,  the  contrast  of  the
maximum target  had  always  to  be  reduced  to  lower  its
salience; it never was increased above the item contrast of
the reference distractors (cf. Fig. 34). The need to reduce
the salience of the maximum target to make the two targets
look  equal-salient  was  seen  with  both  DARK  and
BRIGHT targets and thus confirms the general validity of
the proposed maximum-minimum paradigm.

An interesting issue would be the possible influence of
blob density in these comparisons. One could expect that
in patterns with densely arranged blobs it is not the item
salience of targets and distractors that is compared but the
discrimination  salience  (target-to-distractor  contrast),
which should be based on identical differences for the two
targets.  Couldn’t  it  be  that  for  a  certain  blob  density
discrimination  salience  would  be  so  dominant  that  the
perceived difference in the maximum-minimum paradigm
would disappear? The data in Figure 34 indicate that this
will likely not happen. In both curves, obtained with the
wide  and  dense  blob  raster,  salience-matched  maximum
targets  displayed smaller  luminance  differences  than the
according maximum targets.

The salience variations with blob density are illustrated
in  Figure 36.  Note  that  the  luminance  settings  in  all
patterns are identical and that target and distractor settings
in  the  left-  and  right-hand  patterns  are  exchanged  to
illustrate  the  maximum-minimum  paradigm.  In  one
extreme  case  (uppermost  patterns),  distractors  are  so
densely packed that  the  background  is  not  seen.  In  the

other extreme (bottom), items are so widely spaced that all
distractors fall outside the pattern and only single targets
are shown. In the other patterns, targets and distractors are
show in various densities.

How does the relative salience of the two targets change
with density? Let’s start with the uppermost case, which is
somewhat  special.  In  principle,  the  item  salience  of  a
single target on background is related to its Weber contrast
(Nothdurft, 2015). Since the increment and decrement of
the two targets to their backgrounds are the same, the ratio
to  backgrounds  would  be  important.  According  to  the
Weber contrast, the left-hand BRIGHT target on the dark
background should appear more salient than the right-hand
DARK target  on the bright  background.  Several  studies
(e.g.,  Dannemiller  & Stephens,  2001)  might  predict  the
opposite, as they have found decrements being rated more
salient than equal increments – on the same background.
For  different backgrounds,  however,  salience  is  better
described  by  differences  in  the  power  of  luminance
(Nothdurft, 2015, Exp. 7), which should then make both
targets  equal-salient.  That  is  also  the  impression  most
observers have when looking at the top row patterns of
Figure 36. When moving down to the other patterns, the
impression of equal salience disappears and the maximum
targets on the right-hand side become clearly more salient
than  the  minimum  targets  on  the  left.  This  salience
difference  remains  until  finally,  in  the  bottom  pattern,
single  items  are  compared.  The  backgrounds  here  are
identical and both targets are DARK, thus target salience
should  correlate  with  the  target-to-background  Weber
contrast (Nothdurft, 2015), which is, of course, larger for
the  target  on  the  right-hand  side.  The  figure  nicely
illustrates the interplay of the two salience aspects, item
salience and discrimination salience. Targets in the bottom
pattern only show item salience, which is different for the
two  targets.  Targets  in  the  pattern  on  top  only  show
discrimination salience which is apparently similar for the
two targets. (It is, of course, item salience, which lets the
targets stand out here, but from construction, the pattern
displays the luminance difference to distractors, not to the
background.) From top to bottom, discrimination salience
diminishes while item salience becomes more dominant.
Whether or not this transition is linear, is not quite clear
yet.  Note  that  matches  also  change  from  comparing  a
bright target (left) and a dark target (right), in the top rows,
to comparing two dark targets, in the lower rows. Some
people find the salience of the left-hand target in certain
densities particularly low (e.g., 3rd or 4th row in Fig. 36).
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Whether that is a true observation or an impression caused
by the rapid loss of discrimination salience in comparison
with the patterns above needs to be studied. However, the
center-surround structure  of  neurons  in  early processing
stages  of  the  visual  system (“lateral  inhibition”)  should
allow  for  local  sinks  and  troughs  of  (minimum)  target
salience at certain blob densities.

Summary of Section B

Section  B  presented  equal-salience  matches  of  different
target types along three major lines of experiments. 

1.  Targets  in  maximum  and  targets  in  minimum
configuration (cf. Fig. 1) were matched against a constant
salience  meter,  which did not  only identify the rules  of
equal salience in these stimuli but also provided a useful
basis for measuring salience differences between targets.
In  certain  configurations,  the  different  effects  of  item
salience and discrimination salience were again seen.

2. Targets at different luminance polarity to background
confirmed the  importance  of  Steven’s  brightness  law in
these  matches.  In  addition,  quite  different  target  types
were  often  seen  to  be  matched  according  to  their
luminance settings and not their lightness.

3.  The  maximum-minimum  paradigm  was  confirmed
with items. In all presentations, minimum targets were less
salient  than  the  corresponding  maximum  targets.  In  a
demo it was shown that this difference holds for all raster
widths.

Contrary  to  the  experiments  in  section  A,  matching
performance  in  section  B  could  sometimes  not  be  well
predicted from simple algorithms, which suggested me to
study salience computation in  a  larger  variety of  model
algorithms in section C.
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Conclusions from discussion:

Stevens’  brightness  law  also  holds  for  salience
matches  across  contrast  polarities,  if  distractors  are
identical in luminance. Under these conditions, small
target  variations  in  minimum and  maximum targets
are  matched  identical.  –  The  maximum-minimum
paradigm holds for all blob densities.

Figure  36.  The  maximum-minimum  paradigm  in  different  blob
densities.  In  the packed case (top),  both targets are about  equal-
salient  (discrimination  salience).  With  decreasing  blob  density,
discrimination salience diminishes and only item salience remains.
In the singles case (bottom), the two targets differ notably.

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           54

C: COMPUTATIONAL MODELS

Hints for reading: This section is very computational –
and may look more frightening than it should. Various
algorithms  are  tested  whether  they  can  predict  the
experimental  data.  Experiments  from  section  A are
analyzed in part I, experiments from section B in part
II.  The  comparisons  of  predictions  with  the  data are
very  detailed;  skip  them  if  you  feel  bored  –  best
predictions will later be summarized. Particularly in part
II,  there  is  little  generalization  –  except  that  power-
transforms  are  (mainly)  important  for  cross-polarity
matches.

The failure to find a unique algorithm for equal-salience
matches  in  all configurations  suggested  a  more  general
evaluation  of  computational  models.  The  idea  was  to
define a large set of possible salience algorithms and test
which  of  them can,  or  cannot,  predict  the  experimental
data. The original hope was to identify one algorithm that
would predict performance in all various matching tasks. 

Selection of proposed salience algorithms

An overview of the tested algorithms is given in Table 1. It
includes  algorithms  that  were  intuitively  considered  to
represent  possibly valid  models  of  salience computation
(cf. Nothdurft, 2015), like the constant-addition principle
(algorithm 1)  and  the  constant-ratio  principle
(algorithm 2). These algorithms were already introduced in
sections A and B. Other algorithms were added because
they  appeared  to  fit  the  experimental  data  in  some
experiments, like the salmin algorithm 5 also introduced in
section  A,  or  because  they  had  been  suggested  in  the
literature  on  related  topics  (e.g.,  transparency),  like  the
Singh algorithm 8 (Singh and Anderson,  2006).  Quite  a
few algorithms were included because they represented,
in  principle,  plausible  combinations of  target,  distractor,
and background luminance; some of them are only listed
for completeness. For example, when adding an algorithm
that  computes  the  ratio  of  target-to-distractor  and
distractor-to-background  Weber  contrasts  (algorithm  9),
it  seemed  reasonable  to  include  also  an  algorithm  that
computes the same ratio of Michelson contrasts (algorithm
10)  and,  in  particular,  the  ratios  of  items’ contrasts  to
background (algorithms 11 and 12).

It  should  be  noticed  that  some  algorithms  are
mathematically  identical,  like  the  Ratio  of  Relative
Differences (first  entry  in  Intermediate  Ratio
Computations) and  the  salmin algorithm  5;  these
algorithms are  listed in  Table 1 but  were not  numbered
(and, of course, not computed) twice. The same is true for
algorithms  that  are  not  identical  but  make  identical
predictions when used to predict equal-salient targets; this
is,  for  example,  the  case  for  the  Luminance  Ratio (no
number)  and  the  Weber  contrast  (algorithm 2),  which
reduce  to  the  same  equation  of  luminance  ratios  when
used  to  predict  test  target  luminance.  Other  algorithms
may become identical in certain stimulus conditions, like
algorithms 5 and 6 in minimum target conditions, in which
the maximum and minimum are represented by distractor
and background luminance settings. But these algorithms
will  differ  in  other  stimulus  conditions.  An  important
example are the Weber and the Michelson contrasts, which
make the same predictions for matches of similar targets
(both  DARK  or  BRIGHT  and  both  maximum  or
minimum)  but  different  predictions  for  matches  of
BRIGHT and  DARK  targets.  Some  algorithms,  finally,
may  lead  to  identical  predictions  under  the  special
restrictions of a particular test series, like algorithms 1, 2,
and 3, which all had predicted equal target luminance for
patterns  in  test  series  block  K (where  distractors  were
identical; see section A)5.

The list of algorithms in Table 1 is rather long in spite
of the simple stimuli used in this study. But although the
stimulus patterns were simple, target salience can be, and
obviously is, affected by various stimulus properties. For
example,  targets  differ  from  distractors,  but  also  from
background, and both aspects were seen to contribute to
their salience. Distractors, too, are salient, as they differ
from background, and their  item salience may also affect
the  resulting  salience  of  targets.  It  is  not  a priori  clear
which of the different components can be ignored or must
be added, subtracted, or weighted proportional to obtain
the correct measure of salience in the experiments. Thus,
while some algorithms in Table 1 only care of target and
distractor luminance, others include the background as a
parameter,  and  differences as  well  as  ratios  are  used to
combine target and distractor contrasts. 

5  Small variations in MSD values from these algorithms are due to the fact 
that distractors were, in fact, not exactly identical. Since target and 
distractor luminance was slightly affected by stray-light on the monitor, 
the same luminance settings on a dark or bright background could slightly
differ in luminance. These (measured) values were used in the 
computations.

Published  online: 6-Jun-2015       © christoph.nothdurft@vpl-goettingen.de                                                                                 ISSN:2364-3641

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           55

Nonlinear luminance scales

While the first approach into the modeling of luminance-
defined  salience  mechanisms  was  performed  on  linear
luminance  scales,  certain  tests  (Exp. 11  and  12)  had
revealed  matches  that  were  better  explained by salience
computations  on  a  nonlinear  luminance  transform.
Perceptual  sensation  of  certain  luminance-based
parameters,  like  brightness  perception  or  discrimination
threshold, are not linearly related to luminance but follow
a power function of the form 

Δ sensation ~ Δ luminance x

(cf.  Stevens,  1961).  Experimental  estimates  of  the
exponent may go down to x=0.33 so that a linear change
in perception might correspond to an up to 3-fold variation
of luminance. To include these characteristics in analysis,
all  computations  of  Table  1  were  repeated  with  values
representing power transforms of the original luminance
settings, with one of five different exponents;  x=1.0 (the
linear case already referred to above),  0.85, 0.7, 0.5, and
0.33. For that, background, distractor, and reference target
luminance  settings  were  first  transformed  with  the
according power function. The new values were used to
predict,  with the formulas of  Table  1,  the (transformed)
test target values, which then were back-transformed into
luminance  (power  functions  with  exponents  1/x;
values < 0 were ignored). All further computations and the
evaluation of MSD were performed as already described
in the General Methods section. 

Conventions. For simplicity, I will use the nomenclature
“power|x” to indicate  that  an analysis  was based on the
luminance scale after a power transform with exponent x;
“power|1.0”, for example, would indicate the linear case.
When  referring  to  certain  algorithms,  I  will  use  the
numbers listed in Table 1, but will put these numbers in
rectangular  brackets  if  the algorithm was applied to  the
power|0.33  transform.  In  predictions  from  algorithm  1,
thus,  targets  had  a  constant  luminance  difference  to
distractors, whereas in predictions from algorithm [1] the
power|0.33 transforms of these differences had been set
constant. 

The  decision  to  use  all algorithms  of  Table 1  for
salience  computations  from  power  transforms  was  not
driven by reasons of physical plausibility but rather by the
easiness of table computations. After having replaced the
luminance settings by their  according power transforms,

all computational procedures could be used with no need
of  further  modifications.  As  to  be  expected,  certain
algorithms  are  “immune”  against  power  transformations
and produce the same predictions with power|x as with the
linear  power|1.0  luminance  scales.  For  example,  the
power-transformed  version  of  algorithm  2  (Weber
contrast),
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which gives the same result of testtg  for all exponents  x.
The  same  is  true  for,  e.g.,  algorithm 3  (Michelson
contrast).

Additional Algorithms (tested but not reported here)

A number of algorithms not listed in Table 1 were tested
but not included in the final analysis.

Hybrid algorithms. As already discussed, targets with low
item contrast are barely visible and cannot be salient, even
when they strongly differ from distractors. This was taken
care of in an intermediate analysis with several “hybrid”
algorithms. Predictions from these algorithms were based
on separate  computations,  one  calculating  the  presumed
target-to-distractor (discrimination) salience, the other the
presumed  target-to-background  (item)  salience.  Hybrid
algorithms  were  not  generated  for  algorithms  that  did
already include combinations of both salience measures,
like  all  algorithms  above  number  10.  The  two  salience
measures were then combined by taking the minimum of
both. Other combinations (like multiplication, division, or
different  weightings  of  the  two  measures)  were  not
calculated.  Hybrid  algorithms  of  this  sort  were  only
applied to targets in minimum target configurations; since
only in these configurations could low item salience block
the  higher  discrimination  salience.  Some  of  these
algorithms produced quite  good predictions  of  the  data,
but  these  were  generally  not  better  than  the  best  fits
obtained  with  the  “standard”  algorithms  in  Table 1.
Therefore, the results from this sort of hybrid algorithms
are not reported here. 
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A different  way  to  combine  discrimination  and  item
salience  measures  might  have  been  the  evaluation  of
threshold  values  to  maintain  the  target’s  visibility  (as
discussed  in  Fig. 15).  This  way  was  however  not
implemented,  for  two  reasons.  First,  subjects  had
apparently used  different thresholds in  their  adjustments
(see Fig. 15b) and further experiments would be necessary
to  measure  these  thresholds  in  order  to  put  the
computations on an experimentally valid ground. Second,
all these variations could explain only small deviations in
a  very  small  proportion  of  experimental  data  (mainly a
few  minimum  targets  in  very  small  distractor-to-
background luminance window). At the present stage of
the project it seemed more important to clarify the general
outlines of salience computation from luminance than to
make exact predictions of small modifications in certain
stimulus combinations.

In  a  later  stage  of  the  study,  a  different  new  hybrid
model was  tested,  which  computed  various  averages of
predictions  from  algorithms  1  (constant  addition),  2
(constant  ratio),  and  5  (salmin).  The  model  seemed
particularly promising  in  predicting  salience  matches  of
BRIGHT maximum targets and will be introduced below.

Root  of  Mean  Squares. An  algorithm  that,  on  a  first
glance,  should  have  been  useful  to  measure  target
conspicuity  in  different  luminance  settings  is  the  RMS
(root of mean squares) which provides a reliable measure
of contrast in textures and random dot patterns (Moulden,
Kingdom,  &  Gatley,  1990).  However,  with  the  simple
stimuli of the present study with only two luminance levels
beside  the  targets,  the  RMS  cannot  generate  new
predictions over those already listed in Table 1. Another
objection against a general testing of this algorithm is the
wide spacing of items in the present study, which does not
generate the percept of textures or random dot patterns, for
which the RMS measure was suited best (Moulden et al.,
1990). 

Reflection and Self-Luminosity.  Finally, a different line of
modeling should be mentioned that would be based on an
interpretation of luminance settings as reflection and self-
luminosity components. In principle, the luminance of all
items and the background in the tested patterns could have
represented  a  combination  of  reflection  and  self-
luminosity,  and  all  six  parameters  might  have  changed
independently between the reference and test patterns. To
allow  for  any  useful  predictions  from  this  model,  we

would  have  to  make  assumptions  about  item  and
background  identities  and  about  illumination  changes
between the patterns. Plausible (but arbitrary) assumptions
might,  for  example,  be  that  backgrounds  were  purely
reflective  and  any  (inconsistent)  variations  of  distractor
and target luminance resulted from additional luminosity
components of the items. But further restrictions are still
required to predict test target luminance. 

With a few such restrictions the model was originally
included in the computations for Experiments 1-4 (section
A). But the model was later removed from analysis as it
could not be applied to all stimulus combinations tested.
The  plausible  assumptions  on  which  the  model  was
originally based cannot account for targets with different
luminance polarity (DARK versus BRIGHT) or for targets
with  different  rankings  (minimum  versus  maximum)  in
reference and test patterns. Targets that are dimmer than
background  or  distractors  cannot  be  transformed,  by  a
pure illumination change, into test targets that are brighter
than background or distractors.

Computations

Each  algorithm  of  Table 1  was  used  to  predict  the
luminance  of  salience-matched  targets  in  all  test
conditions of the study. With the plausible assumption that

saltest target = salreference target 

(equation 1) for a perfect salience match, the luminance
settings  of  each  test  condition  were  entered  into  the
formulas and solved for  tgtest.  With some formulas,  this

leads to quadratic equations with two solutions, of which
only  the  physically  possible  one  (luminance  cannot  be
negative) or that closer to the experimental data was taken.
The quality of each individual prediction was measured as
the  mean  squared  deviation,  MSD, of  predicted  from
measured data (averaged over all subjects). MSD values
were  computed  separately  for  the  different  test  series
blocks and also for “totals” of all tested stimuli. Dense and
wide blob arrangements were analyzed both separately and
in combination.

For  combinations  of  different  targets,  as  studied  in
section  B,  two  different  procedures  were  used  for
computational  predictions.  In  one  procedure  it  was
assumed  that  the  salience  of  the  different  types  of
reference  and  test  targets  was  obtained  from  different

Published  online: 6-Jun-2015       © christoph.nothdurft@vpl-goettingen.de                                                                                 ISSN:2364-3641

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           57

salience mechanisms. Predictions were thus achieved from
mixed combinations of two algorithms, one to compute the
presumed salience of the reference target and the other to
predict  from this  salience value the expected  test  target
luminance setting. To restrict the number of combinations,
only the five best algorithms of either target type (as listed
in  Table 2,  column  5)  were  used  for  predictions  from
mixed  combinations.  For  the  other  procedure  it  was
assumed that the salience matching of different targets is
based on a common mechanism (which might be different
from that one optimal for pure salience matches of either
target  type).  Thus,  reference target  salience computation
and test target luminance prediction were achieved from
the same  unique algorithm in a similar procedure as that
used for data from section A.

Intrinsic  Correlations.  To  find  out  how  correlated,  or
uncorrelated, the various algorithms behave when applied
to the data, a virtual set of luminance data was tested, in
which  background,  distractor,  and  reference  target
luminance  settings  were  systematically  varied  over  the
experimental  range  and  test  target  luminance  was
computed using the algorithms of Table 1. The correlation
coefficient of different such computations was computed.

Outliers.  To avoid extreme (and non-realistic) deviations,
predictions  that  fell  outside  the  experimental  luminance
range were ignored and not included in the analysis.  In
these cases,  however,  the MSD was based on a smaller
number of data points than tested and a smaller number of
data  than  evaluated  in  other  computations,  which  could
have  biased  the  results.  To  overcome  this  problem,  the
MSD computation (for a given algorithm and block of test
series) was defined as invalid and excluded from analysis,
if 10% or more of the data points were ignored. 

A different  sort  of  “outliers”  was  data  for  which  a
perfect  match  could  not  be  obtained  experimentally,  for
example, if the matches had fallen outside the luminance
range  of  the  monitor.  Observers  could  not  reject  such
matches but always had to find the best approach. Most of
these mismatches were obvious and data points were then
removed  from  analysis.  But  even  if  a  few  of  such
mismatches  had  not  been  removed,  the  resulting  error
should  be small.  If  such data  points  had been  correctly
predicted, the resulting values should have fallen outside
the monitor  limits  and data  points  hence been excluded
from MSD computation.

Results and Discussion

An  overview  of  the  best  fitting  algorithms  for  each
experiment is given in Tables 2, 2H, 3, 3A and 4. Some of
these fits were already plotted in the previous figures. As
we will see, there were notable differences in the quality
of  predictions.  In  some  test  series,  one  algorithm  was
clearly  better  in  predicting  the  experimental  data  than
others; in other test series, several algorithms might have
produced comparable and sometimes rather good fits.  In
particular  the  matches  of  DARK  targets  in  minimum
configurations were very closely predicted by quite a few
algorithms (cf. Table 2 C1).

Intrinsic correlations

Given the limited data set to which the algorithms were
applied (six parameter values, the independent variation of
which is often reduced by general restrictions from target
type and configuration) and the similar “essentials” in the
computations  (most  algorithms  compute,  in  various
combinations, the target-to-distractor difference) it is not
surprising that many algorithms make similar predictions
in  certain  tests.  In  fact,  when  the  available  luminance
range  is  systematically  scanned  with  background,
distractor, and reference target settings and test targets are
predicted  from  these  settings,  the  data  show  a  high
intrinsic correlation. Over all possible pairs of algorithms,
the averaged correlation coefficient is r = 0.67, without the
identity cases. For example, the correlation coefficient of
algorithms  1  (constant  addition)  and  2  (constant  ratio),
averaged over all  possible test conditions,  is  r = 0.86;  it
varies between 0.64 (for matches of DARK minimum and
DARK  maximum  targets)  and  0.94  (for  matches  of
BRIGHT  targets  in  either  configuration).  Only  two
algorithms, algorithms 15 and 16, produced data that were,
on average, less strongly correlated (and for certain target
matches  even  anti-correlated)  with  the  predictions  from
other  algorithms (mean correlation  coefficients,  r = 0.33
and  r = 0.30);  they  both  do  not  depend  on  distractor
luminance. But even these algorithms were more strongly
correlated with other algorithms in certain tasks. Thus, it is
unavoidable that the possibly correct salience mechanism
shares  some  of  its  features  with  other  algorithms  of
Table 1. 

Strong intrinsic correlations also exist when algorithms
are applied to either the linear luminance scales or their
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power  transforms.  The  averaged  correlation  factor
between these cases is  r =  0.94 when averaged over all
algorithms  (without  the  identity  cases  for  which
computations do not change with the exponent of power
transforms).  But  correlation  factors  can  be  smaller,  and
computations  more  distinct,  when  the  investigated
luminance  range  is  large  and  luminance  values  differ
considerably from their power transforms. 

I. Matches of Similar Targets

Hints  for  reading: This  section  analyzes  the
computational predictions for Experiments 1-4; which
algorithms are good and which ones fail. Fig.41 shows
improved fits of BRIGHT target data when averages of
certain  predictions  rather  than  the  individual
predictions themselves are looked at. Otherwise there
is nothing new here if you are not interested in details.

In the first  major computational  analysis,  we attempt to
predict  performance  of  equal-salience  matches  in
Experiments 1-4 of section A and Experiment 7 and 8 of
section B.

MSD variations with different algorithms

Figure 37 shows the MSD values obtained with different
test  series  on  DARK  maximum  targets;  the  smaller  the
MSD value  for  an  algorithm,  the  better  is  its  fit  to  the
experimental  data.  Algorithms  are  sorted  for  increasing
MSD values in the Total test sample on the left; the same
order is used in the presentations of the different test series
towards  the right.  With  test  series  block  L,  quite  a  few
algorithms produced more  than  10% invalid  predictions
(values  outside  the  available  luminance  range)  so  that
MSD values were not taken. 
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Figure 37. Distributions of MSD (mean squared deviation) values for various predictions of DARK target matches in the different test series
of section A. Algorithms (see Table 1) are listed on the left and are sorted for increasing MSD values in the Total test sample. MSD values of
the other test series are shown in the same sequence. Different algorithms listed in one line were mathematically equivalent in these tests or
made identical predictions. Histograms plot MSD values for  all tests in a given test series; red and blue curves those of the sub-samples
obtained with dense and wide blob configurations, respectively. All values are plotted towards the right (see scales on top). Missing data
indicate that the algorithms had produced too many invalid predictions, i.e. predictions outside the available luminance range of the monitor
(see text). By and large the general courses of distributions are similar for different test series, except for local “sinks” in some distributions.
For example, algorithm 2 (identical with algorithm 3 for these matches) produced particularly small MSD values in test series K and F, but
not in series  J or the  Total sample. The overall  smallest  MSD values for DARK maximum targets were obtained for predictions from
algorithm 1.
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While some algorithms produced large MSD values and
hence  failed  to  predict  the  experimental  data  (e.g.,
algorithms  5  and  14),  other  algorithms  generated  very
small  MSD  values  and  thus  closely  described  the
observers’ performance  in  the  salience  matches.  In  the
Total sample, the smallest MSD value was 5.46 obtained
with  algorithm 1  (Table 2,  A5).  Certain algorithms were
perfect  for  one particular  test  series  but  less  perfect  for
another series. For example, algorithm 8 made particularly
good  predictions  in  test  series  block  L and  J but  was
poorer  in  test  series  blocks  K and  F where  other
algorithms  produced  much  smaller  MSD  values.  In  the
Totals computed over all test conditions, algorithms 1, 13,
4=7, A, and 8 (in this order) were best (Table 2, A5). The
constant-ratio principle (Weber contrast; algorithm 2), on
the other hand, which should be very useful for salience
estimates  because  of  its  insensitivity  to  illumination

6  For the physical unit of MSD values, see Footnote 1.

changes, was poorer than any of these. It only made good
predictions in test series blocks K and F, but that might be
due  to  the  special  stimulus  conditions  in  these  tests
(identical distractors in reference and test patterns), which
made  this  algorithm indistinguishable  from algorithm 1.
Beside such  variations,  however,  the general  ranking of
MSD values was fairly similar in the different test series.
Certain algorithms were good, others bad, in all test series.
Note  that  the  salmin algorithm 5  (which  had  fitted  the
salience matches of several other target types; cf. Figs. 3a,
7) was generally very poor with DARK maximum targets.
There was a small variation between matches in dense and
wide  blob  configurations  (blue  and  red  MSD  curves,
respectively, in Fig. 37); predictions were generally a little
better for data obtained in dense configurations.

In the MSD distribution for  BRIGHT maximum targets
(Fig. 38) there were more invalid computations, and hence
more missing data  entries.  Across these holes,  however,
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Figure 38. Distributions of MSD values for predictions of BRIGHT maximum target matches in section A. Presentation as in Fig.37, with
two modifications.  In  addition to  the algorithms listed in  Table 1,  also data  from three hybrid algorithms are included (green),  which
represent averages of predictions from three original algorithms (see text). In test series J where data from wide and dense blob matches had
been pooled (see Fig.20), the superimposed data curve (gray circles) represents MSD values if condition 1 (label 1 in Figs.20 and 21) was
included in analysis (in the histogram data it was not). The overall smallest MSD values were obtained from the hybrid algorithms  <2,5> and
<1,5> and from algorithms 5 and 2 (equivalent to algorithms 6, 11, E and 3, 7, respectively).
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the  trends  are  similar  for  the  different  test  series.
Distributions are again sorted for increasing MSD values
in the  Total test sample, but except for a few outliers the
ranking  is  similar  in  the  other  test  series  blocks.  Only
series  K shows  notable  deviations;  there  are  small  and
large MSD values all  over the sequence.  One particular
high  MSD  value  was  obtained  for  algorithm  2  (and
equivalent  algorithms  3  and  7)  which  made  better
predictions in the other test series. Performances in wide
and dense blob configurations (blue and red data points)
again are similar although more variable than with DARK
maximum  targets.  An  obvious  difference  compared  to
DARK  maximum  targets  (Fig. 37)  is  the  larger  MSD
values  of  even  the  best  predictions  (smallest  black
histogram  bars).  The  best  algorithm  5  (equivalent  to
algorithms 6, 11, and E) for BRIGHT targets produced, in
the Total sample, an MSD value of 21.4, which is about 4-
fold  the  best  MSD  value  5.4  obtained  for  DARK
maximum targets (Table 2, E5 vs. A5).

New hybrid algorithms 
This poorer performance of even the best algorithms with
BRIGHT targets has set off the search for a new algorithm
that  might  better  predict  the  experimental  performance.
Several  experiments  have  suggested  that  matches  might
sometimes fell in the middle of two predictions, so as if
observers  would  match  target  salience  according to  two
models and then chose the mean of both (cf. Figs. 3b, 11
and 12). To test if such an averaging process might have
also been used in the salience matches of BRIGHT targets,
three  new  algorithms  were  tested  defined  as  algebraic
means  of  two (of  three)  standard  algorithms.  Algorithm
<1,2> computed the means of predictions from algorithms
1 and 2, algorithm <1,5> the means of predictions from
algorithms 1  and  5,  and  algorithm <2,5>  the  means  of
predictions from algorithms 2 and 5. 

The  MSD  values  of  these  averaged  predictions  are
plotted in green into Figure 38. An overview is also given
in  Table 2H.  Two  of  these  new  algorithms  did  indeed
improve  the  predictions  of  experimental  data  in  quite  a
few but not  all  test  series.  Algorithms <2,5> and <1,5>
provided the best fits of the experimental data in the Total
sample and in test series  F,  but were not better than the
best  predictions of other algorithms, e.g.  algorithm 5, in
test series K, L, and J. Algorithm <1,2>, on the other hand,
generally made poor predictions of the experimental data. 

There are several aspects in these data, beyond a simple
listing  of  performance  ranking,  that  are  worth  further

analysis.  To  understand  and  evaluate  the  differences
between test series it is important to look into predictions
in detail.  It  might also be helpful  to  compare the MSD
distributions  of  different  target  types  and,  in  particular,
their  variations  associated  with  linear  or  power-
transformed luminance scales.

Fits and misfits in predicted performances

Figures 39-41 show predictions from different algorithms
in  a  number  of  tests;  the  examples  illustrate  various
aspects of the fits and deviations for targets in maximum
configurations.  A detailed inspection of  predictions with
targets in minimum configurations is here not made, since
predictions were generally quite good for these targets.

DARK maximum targets 
As  was  already  seen  in  Figure 37,  the  quality  of
predictions from the same algorithms varied between test
series.  This  is  visualized in  Figure 39 where predictions
(colored  curves)  are  directly  compared  with  the
experimental  data  (black  squares).  For  example,
predictions  from  algorithm  8  (purple)  closely  meet  the
experimental  data  in  test  series  L and  J but  strongly
deviate from data points in test series  K (label 1) and  F
(label 2). Obviously, the different backgrounds in the latter
two series (not shown here, but see Figs. 3 and 9) affect
predictions more strongly than was the case in the matches
themselves.  Instead, in test series  K and  F algorithms 1
(lighter  blue)  and  2  (yellow;  partly  hidden  behind  the
lighter  blue  line)  produce  almost  perfect  fits,  but
predictions from these algorithms, deviate more strongly,
at  least  locally,  from  the  data  in  series  L and  J.  Only
algorithm 13 made predictions that are fairly close to the
data in all test series, but these predictions are consistently
less  perfect  than  the  best  predictions  from  either
algorithms 1, 2, or 8. In test series J, we see an increasing
deviation of predictions from the data from the left-hand
curve  sections  (label  4)  towards  the  right-hand  sections
(label 5). Remember that reference distractor levels varied
between these curve sections whereas background settings
had remained constant over all tests (cf. Fig. 17). On the
left-hand side of series  J in Figure 39d (curve section at
label 4), data represent identity matches, and expectedly
all  algorithms  accurately  predict  this  performance.  But
with  increasing  luminance  levels  of  the  reference
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distractors (curve sections towards the right), reasonably
good  predictions  were  only  maintained  from
algorithms 1=4,  8,  and  13,  while  predictions  from
algorithms 2 and A develop to become the worst ones of
this  collection.  Over  the  Total data  sample,  however,
algorithm 1  turns  out  to  be  the  best  (cf.  Table 2,  A5),
although  it  is  beaten  in  some  test  series  by  other
algorithms. Algorithm 8, on the other hand, which predicts
quite accurately the experimental data in test series block
L, is too sensitive to background variations and thus fails
in  other  tests.  To  get  a  feeling  of  how  deviations  are
reflected in the MSD values,  the accuracy of individual
fits in Figure 39 should be compared with the according
values  in  Table 2,  row  A.  But  note  that  the  MSD  is
computed from all  test  conditions of a series; therefore,
even  large  deviations  in  a  few test  conditions  may still
result in an acceptable MSD if all other test conditions are
met. Also note the different y scales in Figure 39.

BRIGHT maximum targets. 
Similar observations can be made with BRIGHT targets
(Fig. 40). Algorithm 2 (red lines), for example, generated
the best predictions in test series blocks LX (label 6) and J
(label 10) but strongly failed in test series blocks K (label
1)  and  F (label  7).  Note  that  problems  occurred  when
BRIGHT test targets  were to be predicted from dimmer
reference  targets;  several  algorithms  then  predicted
luminance settings that exceeded the monitor settings in
experiment. This is seen in the examples of test series  L
(labels 2 and 3) and J (at label 8). Even when these data
points  are  excluded  from  analysis,  the  remaining
predictions  might  falsely  be  considered  a  too  good  fit
(small MSD), despite the fact that many data points could
not be fitted at all. This was the reason to introduce a 10%
rule according to which MSD values were not computed
when 10% or  more  of  the  data  points  in  a  sample  fell
outside  the monitor  range and had  to  be  ignored.  After
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Figure 39. Best predictions of DARK maximum target matches. Plots show sequences of matching data obtained in section A (black squares)
together  with best  predictions (colored  curves)  obtained from various  computations in  section C.  a.-d.  Different  test  series  blocks  as
indicated; note that the data from different series within each block, which were plotted separately in the previous figures, are here (and in
the subsequent figures) shown as continuous sequences. Curves listed but not visible in a certain plot are hidden behind another, similar
curve. Framed labels are referred to in text. 
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applying this rule, only MSD values from algorithms 1, 2,
4 and 14 remain valid in series  L (cf. Fig. 37), of which
only algorithm 2 produces sufficiently good predictions to
be plotted in Figure 40 (red lines). But note that exactly
this  remaining  algorithm  2  has  made  rather  poor
predictions  in  test  series  block  K.  Vice  versa,  the  best
algorithms for series K, algorithms 8b, 5, 8a, 8, and 13 (cf.
Table 2, E1), all generated too many missing data points in
test series L. The amount of invalid predictions was much
smaller in test series block LX (labels 5 and 6) where test

targets  were  dimmer  than  reference  targets  and  most
predictions did not exceed the available luminance range.
To overcome the problem of invalid predictions in the left-
most data points of test series block  J (where test targets
had  to  be  adjusted  brighter  than  reference  targets;  cf.
Figs. 20c  and  21),  MSD  analysis  was  restricted  to  test
conditions with test targets equal or dimmer than reference
targets (all conditions from the second curve section on in
Fig. 40, label 9); the “problematic” matches (label 8) were
excluded  in  MSD  computations.  Since  subjects  had
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Figure 40.  Best  predictions of BRIGHT maximum target matches. a.-e.  Data sequences from different test  series blocks,  as indicated.
Presentation as in Fig.39. For details see text; framed labels will be referred to there. Zero values (labels 2, 3, 8) are from invalid predictions.
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apparently switched to a different algorithm in these tests
(cf. Fig. 21), it is reasonable to not analyze the data in one
common sample.

The  interpretation  of  performance  in  the  other  test
series is straight forward. In test series  F,  algorithm 2 is
not affected by background variations and hence cannot
predict  the  experimental  performance,  which  is  clearly
affected  by  background  settings.  All  other  algorithms
follow  the  data  variations,  the  strongest  deviations
being  produced  from  algorithm  13.  Thus,  Figure 40

reveals several best fitting algorithms, but none of them
is  good in  every test  series.  Algorithm 2  is  rather  good
in test series blocks  L, LX, and  J, but poor in test series
K and F. Algorithms 5 and C are good in most test series
(in  series  J even better  than algorithm 2) but  produce a
large  number  of  predictions  outside  the  available
luminance  range  in  series  L.  Altogether,  the  best  MSD
values  of  the  Total sample  are  therefore  larger  with
BRIGHT  than  with  DARK  maximum  targets  (Table 2,
E5 vs. A5). 
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Figure 41. Fit improvements in Fig.40 by hybrid algorithms. a.-e. Data sequences and best predictions from Fig.40 are shown together with
predictions from the three hybrid algorithms <1,5>, <2,5>, <1,2> (white). For discussion, see text.
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The  partially  improved  fits  of  the  new  hybrid
algorithms <1,2>,  <1,5>,  and  <2,5>  are  shown  in
Figure 41 as white curves. While the thinnest white lines
(predictions from algorithm <1,2>) sometimes run far off
the experimental data (e.g., at labels 1, 4, 5 and 7, but not
at labels 2,  3, and 6), the middle-thick lines (predictions
from algorithm <2,5>) could get very close (e.g., at label
1, here the middle-thick white curve is partially hidden by
the colored lines; and in test series blocks  LX, F, and  J,
again partly hidden) although often not closer to the data
than other lines, i.e. predictions from other algorithms. A
strong improvement is seen in test series block  F, where
predictions  from the  remaining  hybrid  algorithms <1,5>
(thick  white  line)  and  <2,5>  (middle-thick  line;  partly
hidden by predictions from algorithms 5, yellow, and 8b,
orange)  both  fall  close  to  the  data,  and  a  gradual
improvement in test series block J, where predictions from
algorithm <2,5> (middle-thick white) fall right in between
the already good predictions from algorithms 2 (red) and 5
(yellow),  as  expected  from the  definition  of  the  hybrid
algorithm. Altogether, thus, the introduction of new hybrid
algorithms had gradually improved the fits of experimental
performance (Table 2H).

To illustrate the improvement with test series block  F,
part of Figure 9 is re-plotted in Figure 42 now showing the
original  matching  data  (blue  and  red  symbols)  with

predictions  from  the  constant-addition  principle,
algorithm 1 (continuous gray lines), the salmin algorithm 5
(dashed gray lines) and from the hybrid algorithm <1,5>
(black  lines).  Except  for  test  targets  that  were  close  to
distractor  luminance  (green  circles),  matches  are  better
described by the means of these two predictions than by
the predictions themselves. 

MSD distributions

Figure 43 gives an overview of the MSD distributions for
the  Totals of  all  different  target  types.  The  data  are
individually sorted for magnitude; hence the sequences of
algorithms  differ  between  the  graphs.  The  upper  two
histograms replicate the  Total sample plots of Figures 37
and 38, but red symbols now represent different data. The
lower  two  curves  plot  the  MSD  distributions  of  target
matches in minimum target configurations.

There  are  notable  differences  between  these
distributions. The MSD values for  maximum targets are,
on  average,  larger  than  the  MSD  values  for  minimum
targets. They start at larger values and increase to finally
larger values on the right-hand side of the histograms. In
contrast, the distributions for minimum targets show many
very low MSD values on the left-hand side and only few
larger values towards the right. That is, more algorithms
made predictions outside the monitor range for minimum
target  conditions  and  then  had  to  be  excluded  from
analysis. But of the remaining algorithms also many more
fitted  the  salience  matches  of  minimum  targets  much
better than those of maximum targets. 

This  difference cannot be explained by differences in
the  luminance  ranges  covered  by  these  tests.  Although
targets  in  minimum  configurations  had  to  be  adjusted
between  two  luminance  settings  (the  background  and
distractor  levels),  the  overall  luminance  ranges  were
similar in all tests, as can be seen in Figures 3, 5, and 7.
The fact that the upper and lower luminance limits were
set  in the matches did not  a priori restrict the range of
predicted test  targets.  In  fact,  quite  a  few  algorithms
predicted targets outside this range (and sometimes even
outside the limits of the monitor) and algorithms had to be
excluded from MSD evaluation if this happened too often
in a sample. Note that the MSD distributions in Figure 43
include  only six  algorithms (histogram bars)  for  DARK
minimum  targets  but  fourteen  for  DARK  maximum
targets. 
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Figure 42.  Fit improvements by hybrid algorithms in Fig.9c. Data
plots from Fig.9c (constant BRIGHT maximum targets on variable
background) are reproduced; predictions from the hybrid algorithm
<1,5> are shown together with the predictions of both components.
The averages fit the data better than either algorithm alone.
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A  general  problem  in  the  prediction  of  test  target
luminance  are  formulas  that  include  ratios  of  higher  to
lower  luminance  settings,  like  the  Weber  contrast
(algorithm 2)  for  BRIGHT maximum targets.  When  the

distractor luminance in the reference pattern is low, ratios
can  become very large,  and  the  prediction  of  an  equal-
salient  target  on  an  only  slightly  increased  distractor
luminance  in  the  test  pattern  may  quickly  exceed  the
available  luminance  range.  The  problem will  not  occur
with DARK maximum targets, as their luminance ratio to
distractors  remains below 1  and  cannot  become smaller
than 0. This difference in the computation of luminance
ratios between dark and bright stimuli is one reason why
more  MSD  values  had  to  be  excluded  with  BRIGHT
maximum targets  (11 histogram bars in  Fig. 43,  without
the  later  added  hybrid  algorithms)  than  with  DARK
maximum  targets  (14  bars).  For  minimum  targets,  the
difference  is  reversed;  there  are  more  valid  MSD
computations  for  BRIGHT  (10  bars)  than  for  DARK
minimum  targets  (6  bars).  This  is  explained  by  the
reversed  target-to-distractor  polarity  in  these  patterns.
Although in, e.g., DARK minimum target configurations
all items are dimmer than the background, the targets are
brighter than the distractors. In BRIGHT minimum target
configurations  it  is  the  other  way  around;  targets  are
dimmer than distractors, even though they all are brighter
than the background.

Predictions from nonlinear luminance scales
An  interesting  aspect  is  the  effect  of  luminance  scale
transformations upon the quality of target predictions. The
analysis presented so far (bar histograms in Fig. 43) was
based on predictions from linear luminance scales. The red
curves  show  the  same  analysis  based  on  nonlinear
luminance scales obtained from the power|0.33 transform,
which  was  the  strongest  tested  deviation  from linearity.
The MSD values are plotted in the same order as for the
linear  cases;  that  is,  superimposed  bars  and  data  points
refer  to  the  same  algorithm.  Algorithms  that  had  to  be
excluded  from  linear  analysis  (because  there  were  too
many predictions outside the accepted luminance range)
but  did  generate  reliable  MSD  values  in  the  nonlinear
analysis  are  added  on  the  right-hand  sides  of  the
histograms without accompanying histogram bars.

As Figure 43 shows, the use of power|0.33 transforms
did, in general, not affect the quality of predictions. For a
few  algorithms,  the  predictions  are  slightly  improved
(smaller MSD values), for others the previous predictions
from the linear  power|1.0 luminance scale  are  better.  In
general, predictions from both scales were correlated and
were either both high or both low for a given algorithm.
The two MSD distributions for a given target type were
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Figure  43.  MSD distributions  of  the  four  target  types  tested  in
section A. Histograms plot the values obtained for the Total sample
in  increasing  order;  green  bars  (in  the  distribution  for  BRIGHT
maximum  targets)  are  from  the  three  hybrid  algorithms.
Superimposed red curves show the MSD values obtained for the
same algorithms when applied to the power-transformed luminance
scale (exponent x=0.33). There are only minor differences between
the  two  analyses.  Algorithms  with  valid  data  in  the  power|0.33
analysis (red circles) but no valid data in linear analysis (histogram
bars) were added to the right.
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similar  and  best  MSD values  were  not  notably reduced
when the linear luminance scale was replaced by its power
transform.  The  means  of  each  distribution  do  not  show
significant  differences  between  linear  and  nonlinear
luminance scales (Fig. 44).

In  summary, thus,  the  thorough  analysis  of  salience
matches  of  similar  targets  with  a  large  variety  of
algorithms  did  not  disclose  the  one  unique  salience
mechanism that would explain all experimental data, but
revealed  a  number  of  algorithms  that  could  perfectly
predict the data in some test conditions but not in others.
The best algorithms for the different target types are those
with particularly small MSD values, but small differences
between these values must not be stressed, as predictions
from various algorithms have shown both fits and failures
in  different  data  samples.  With  BRIGHT  maximum
targets,  the  overall  quality  of  predictions  was  slightly
reduced compared to that with DARK maximum targets,
when the magnitude of MSD values is looked at. Here an
improvement was achieved by predicting salience matches
not  from  single  algorithms  but  from  averages  of  two
different  algorithms,  suggesting  that  salience  is  perhaps
less exclusively represented by a single mechanism than
one  might  have  assumed.  Perhaps  one  of  the  most
important findings of section C so far is the observation

that  fit  performance  did  generally  not  improve  when
analysis  was  based  on  power-transformed  (power|0.33)
instead of linear luminance scales, suggesting that power
transforms are only little important in salience matches of
similar target types. As we will see below, this finding is
different in salience matches of different target types and,
in particular, of targets with different luminance polarity to
background.

II. Matches of Different Target Types

Hints  for  reading: Still  alive? I’ am afraid  it’s  getting
even  worse  now.  The  following  section  reports
predictions of experiments in section B, with  different
targets: many details in detailed analyses – skip if you
are  merely  interested  in  an  overview.  Take-home
messages are: mixed combinations are, in general, not
better than unique algorithms, even if these could not
explain the salience estimates of the involved targets
in  other  matches.  Cross-polarities  matches  (but  not
equal-polarity matches) are best predicted from power-
transformed luminance scales. 

In the following analyses,  algorithms of Table 1 will  be
used to  predict  the equal-salience matches  in  section B.
We will first look at matches of similar targets in minimum
vs. maximum configurations (Exp. 9-10, 12 and 13) and
finally  at  matches  of  targets  at  opposite  luminance
polarities to background (Exp. 11 and 12).

Selected Algorithms: Mixed vs. Unique

When trying to predict the matches of different target types
and target configurations, it seems logical to start with a
combination  of  those  algorithms  that  made  the  best
predictions  for  exactly  these  target  types  and
configurations.  For  example,  in  the  matches  of  DARK
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Conclusions from computations part I:

Equal-salience  matches  of  similar  targets can  be
closely predicted but best algorithms vary with target
type,  target  configuration,  and  test  sample.  –
Predictions  of  BRIGHT targets  are  often  improved
when the means of the salmin and constant-addition
or constant-ratio predictions are taken rather than any
of  these  predictions  itself.  –  Power-based
computations are not better than linear ones.

Figure 44.  Mean MSD values of the various matches analyzed in
section C. In the abbreviations below, D and B stand for DARK and
BRIGHT target matches and  max and  min for targets in maximum
or minimum configuration; the code is not repeated for matches of
similar targets. Differences between linear  (“lin”) and power|0.33
analyses  (“pow”) are  much larger  for  the  cross-polarity matches
“maxDB” and  “maxBD” (but  only for  the  latter  one  significant;
p<0.05).
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minimum (reference) and DARK maximum (test) targets
(Experiment 9), the salience of the reference target should
be best predicted from algorithms 10, A, or C (cf. Table 2,
C5)  and  that  of  the  test  target  from  algorithms 1  and
eventually algorithms 13 or 4 (Table 2, A5). It would thus
be  plausible  to  start  the  analysis  with  predictions  from
mixed combinations of these algorithms.

Mixed Combinations
To reduce the number of computations, combinations were
restricted to the five best algorithms for either target (as
listed  in  Table 2,  column  5)  plus  additional  algorithms
with  best  performance  on  the  power-transformed
luminance scales (also listed in Table 2, column 5) if these
were not yet included. In the example of DARK minimum
and  maximum  target  matches,  this  resulted  in  six
algorithms from Table 2, C/D5 (algorithms 10, A, C, 12, 5,
and 8) to be combined with six algorithms from Table 2,
A/B5  (algorithms  1,  13,  4,  A,  8,  and  2),  hence  target
predictions  from  36  possible  combinations.  Similar
selections  were  made  for  the  other  target  combinations
tested in section B. Many of these predictions were rather
poor  (cf.  Table 3  and  3a)  and  do  not  nearly reflect  the
good performance of the individual algorithms in equal-
target  matches.  With  DARK  targets,  for  example,  the
combination of the best algorithms 10 and 1 (Table 2, C5
and A5) produced predictions with MSD values of 219.9
(Series J) or 194.4  (Totals),  which did not even make it
into  the  lists  of  the  five  best  mixed  combinations  in
Table 3,  A1  and A7.  Only the  sample2 data  from wide
blob arrangements were about fitted by this combination
(Table 3a,  A1c).  On  the  other  hand,  combinations  of
originally  less  perfect  algorithms,  like  algorithm 5  for
DARK minimum and algorithm A for DARK maximum
targets, produced the best fit of the full experimental data
set in Series J (Table 3, A1) and the second-best fit in two
sub-samples of the data (Table 3a, A1a and b); according
to the MSD values,  however,  none of  these fits  is  very
good. 

It  is  important  to  point  to  a  general  pitfall  of  mixed
combinations. As equations (1) and (1a) show, formulas in
Table 1 are  connected to  salience with  a  proportionality
factor  k. Only if the salience of both targets is computed
from  the  same  algorithm (equation 1a),  that  factor  will
cancel out and can be omitted. If different algorithms are
combined,  as  in  the  mixed  combinations,  likely  two
different  factors,  k1 and  k2,  must  be  assumed.  This  is
particularly obvious  for  the algorithms 1  and 8,  8a,  8b,

which already differ in their physical dimensions from all
other  algorithms.  Most  algorithms  calculate  luminance
divided by luminance, with no physical unit of salience,
but  algorithm 1  computes  luminance  (unit  cd/m2)  and
algorithms  8-8b  compute  luminance  divided  by squared
luminance  (unit  1/(cd/m2)).  Just  from  these  differences
mixed combinations with these algorithms should likely be
invalid. But even if the according proportionality factors
would be given a unit to make the equations physically
correct,  their  values  are  not  known.  While  it  should  be
simple to compensate for the different factors k1 and k2 in
the formulas, it is not at all obvious how to derive these
factors from the equal-salience matches. I have tested two
(arbitrary) procedures. (i) For each of the two combined
algorithms I have computed the maximal salience value in
a test series; these maxima were then equated to give the
relative weighting of  k1/k2 for the predictions. (ii) I made
the same salience computations for each data point of the
total sample and computed the linear regression of both
distributions.  For  the  computation  of  reference  target
salience  (with  one  algorithm)  the  known  luminance
settings  were  used,  for  the  computation  of  test  target
salience  (with  the  combined  algorithm)  the  known
luminance settings and the matching results. The slope of
the linear regression  (k2/k1) was then used to weight both
algorithms  in  the  computation  of  predictions.  Both
procedures  have  serious  disadvantages.  Because  they
equalize maximal or mean salience values, they may mask
other, perhaps important nonlinear variations in the data.

Both  procedures  were  tested  on  the  combinations  of
DARK minimum and  maximum targets  (Experiments 9,
12  and  13)  to  see  if  the  bad  predictions  from  mixed
combinations can be improved. Many tested combinations
include the critical algorithms 1 and 8 (see Tables 3 and
3a)  and  the  resulting  weighting  factors  k1/k2 in  these
combinations varied between 0.0002 (8:1) and 6100 (A:8).
But the effects on MSD values were small and negligible.
Neither did the best predictions notably improve nor was
the ranking substantially changed. The sequence of  best
combinations in dense patterns, for example, was changed
from 10:A, 5:A, A:1 with MSD values between 38.1 and
69.4 (Table 3a, A1a) to 10:A, A:1, 5:A with MSD values
from 27.7 to 82.1 for the maximum-based weighting (i)
and to A:1, 5:A, C:1 with MSD values from 40.5 to 213.3
for  the  linear-regression-based  weighting  (ii).  The
presumably ideal combination 10:1 of best algorithms for
the  two  target  types  from section  A (Table 2)  produced
generally even larger MSD values than without weighting
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factors. Because of the small effect and the fact that both
weighting  procedures  are  arbitrary  and  may  hide
interesting  correlations  in  the  data,  the  computation  of
mixed combinations was not changed. 

With  BRIGHT  targets (Table 2,  E5-H5),  the  best
predictions  from  mixed  combinations  turned  out  to  be
better (cf. Table 3, C/D1). The best fit to the experimental
data (MSD value of 5.0) was obtained for the combination
of  algorithm  5  (for  the  reference  minimum  target)  and
algorithm 10 (for the test maximum target), which both are
also  listed  among  the  best  performing  algorithms  for
equal-salience matches of either target alone. But note that
only  algorithm 5  (for  BRIGHT  minimum  targets)  had
reliably  predicted  the  performance  in  equal  target  type
comparisons  (MSD  value  2.2;  Table 2,  G5),  while
algorithm 10  (for  BRIGHT  maximum  targets)  was
relatively poor in direct comparisons (MSD value of 44.7;
Table 2, E5). A better fit should be expected if algorithm 5
were applied to both targets. This was done when testing
“unique  algorithms”  (cf.  Table  3,  C2),  with  a  relatively
poor result (MSD value 77.4).

Unique Algorithms
Because  of  the  unexpectedly  poor  results  with  mixed
combinations, predictions were also made using the same,
unique  algorithms for  both  reference  and  test  target
salience computations (Table 3, even column numbers). In
this  case,  the  proportionality  factor  in  the  formulas  is
canceled.  This  generated  a  few  better  fits  but  did  not
generally improve the MSD values in Table 3. While for
DARK target matches in Tables 3 and 3a (row A), the best
predictions from unique algorithms are always better than
the  best  predictions  from  mixed  combinations,  the
opposite  is  true  in  most  predictions  from  nonlinear
luminance  scales  (row  B)  and  in  many  predictions  of
BRIGHT target matches (rows C and D). Note that some
unique algorithms should also have been included in the
list of tested mixed combinations, like the just mentioned
combination 5:5 in the matches of BRIGHT minimum vs.
maximum targets. For the clarity of presentation, however,
these combinations of identical algorithms are only listed
as unique algorithms.

Predictions of the experimental data

We  will  first  look  at  the  matches  of  similar  targets  in
different  configurations,  i.e.  DARK  (or  BRIGHT)
minimum vs. maximum targets.

Matches across minimum and maximum target 
configurations

The  best  predictions  of  these  matches  are  shown  in
Figures 45  and  46.  Remember  that  the  experimental
matches of DARK minimum targets in wide configurations
were strongly influenced by item salience effects and the
experimental data were split in three different sets, dense,
wide sample1 and wide sample2 (Fig. 23). The matches in
the  wide sample1 looked similar to the matches in  dense
configurations.  We should expect  that  the different  data
samples are best predicted by different algorithms, as was
indeed the case (Table 3a). 

This is obvious in Figure 45 at labels 1 and 2. The data
of  target  matches  in  dense  configurations  (Fig. 45a)  are
best,  though  not  perfectly,  fitted  by  predictions  from
algorithm 9, which however fall far off the wide sample2
matching data  in  Figure 45b (label 2).  (Because of  their
similarity with the data from dense configurations,  wide
sample1 data are not plotted in Figure 45.) Vice versa, the
best (but not perfect) predictions of matching performance
in the wide sample2 data were from algorithm 8a, which in
turn  was  poor  in  predicting  the  performance  in  dense
configurations.  Predictions  are,  of  course,  identical  in
these two cases, as they only depend on target, distractor,
and  background  luminance  settings  but  not  on  their
configuration.  This  difference  does  not  show  up  in
Table 3, where MSD computations were based on the full
data set obtained with dense and wide configurations but
can be seen in Table 3a, where data are split.

 A similar difference is found with  mixed algorithms.
The  best  algorithms  for  target  matches  in  dense
configurations do not fit the matches in the wide sample2
data,  and  vice  versa (Table 3a).  The  individually  best
predictions are  obtained  from mixed combinations  10:A
for  dense configurations  and  from  C:1  for  the  wide
sample2 data;  both  curves  are  plotted  in  Figure 45e
(together  with  the  matching  data  from  dense
configurations).  But  even  these  best  fits  from  mixed
combinations are worse than the according best fits from
unique algorithms. The reason is seen when comparing the
fits of individual curve sections (which represent matches
of similar targets among different reference distractors; cf.
Fig. 23).  For  some  combinations,  fits  vary  strongly
between these sections. Predictions from the combination
A:1  (red),  for  example,  are  sometimes  too  high  and
sometimes too small,  and even the computationally best
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prediction from the combination 5:A (yellow) does fit only
some  sections  of  the  data  (around  label 5).  These
variations  with  different  curve  sections  are  less
pronounced in the predictions from best unique algorithms
(Fig. 45a). In addition, the plotted predictions from mixed
combinations tend to over-enhance target contrast, which
is not seen in the data and not in the best fits from unique
algorithms  (except  algorithm  6).  The  general  over-
enhancement of target contrast in mixed combinations is
sometimes reduced when predictions are made on power|
0.33 luminance scales (Fig. 45f).  Here,  some algorithms
([8:4] and, partly hidden behind, [8:2]) produce curves that

sometimes better reflect the experimental variations; this
has strongly reduced the resulting MSD values (Table 3a,
B1a).  But  even  these  predictions  still  over-enhance  the
differences  between curve  sections,  and  among the best
algorithms listed in Table 3, B1, there are still two ([8:1],
[10:A]) that over-enhance target contrast (label 6).  Note
that  the  predictions  in  Figure 45  are  the  best  ones
obtained,  with  the  smallest  MSD  values.  While  it  is
possible that other, not tested combinations may produce
better  fits  of  the  experimental  data,  the  important  point
here  is  that  mixed  combinations  of  algorithms  that  are
perfect  or  almost  perfect  in  predicting  the  matching
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Figure 45. Predictions of DARK minimum to maximum target matches. Plots show matching data from section B (black squares) together
with best predictions from different algorithms (colored curves). a.-d. Predictions from “unique” algorithms; e.-g. predictions from “mixed
combinations”; for details see text. Many algorithms overemphasize the data variations in test series J. Note that data from matches in wide
blob configurations were split (Fig.23); only the dense and wide-sample2 data are here shown. Numbered labels are referred to in text. For
algorithms see Table 1; brackets […] indicate that computations were performed on the power-transformed (exponent x = 0.33) luminance
scale. Curves listed but not visible in a plot are hidden behind another, similar curve. In every graph, curves from the best predicitons
(smallest MSD values in Tables 3 and 3a) are plotted yellow.
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performance with the individual targets do not necessarily
predict the performance in matching these targets against
each other.

The curves from test series WM1 (Fig. 45c, g) and WZ
(Fig. 45d,  h)  confirm these  observations.  Even  the  best
predictions  from mixed  combinations  do  not  reflect  the
course of data curves (labels 7 and 8), quite in contrast to
the predictions from unique algorithms (labels 3 and 4).
Here, like with test series J (wide sample2), algorithm 8a
produces the best fit  to the data of test series WZ (also
obtained  with  wide configurations;  label 4)  but  good
predictions are also obtained from algorithm 5 and, hidden
behind, algorithm 10. In the limited luminance variations
of test series WM1 (Fig. 45c), several unique algorithms
produce similar  predictions (cf.  Table 3).  The  best  fit  is
again obtained from algorithm 8a (Fig. 45c;  the curve is
hidden  behind  the  predictions  from  algorithm  [13]),
whereas algorithm 9, which made the best predictions of
matches in dense configurations and of the wide sample1
data from test series J (Fig. 45a, label 1), performed rather
poorly in both test series WM1 and WZ (labels 3 and 4).

Low item salience  effects  were  less  prominent in  the
matches  of  BRIGHT  minimum  vs.  maximum targets
(Fig. 26), and we do not have to distinguish between dense
and wide  blob configurations  in  the  prediction  analysis.
Figure 46 shows the detailed predictions for all algorithms
listed  in  Table 3,  including  algorithms  applied  to  the
power|0.33 luminance scale. The best predictions in each
graph are plotted yellow, for comparison. Although quite a
few MSD values from the test series J are small enough to
indicate good fits (Table 3, C1-D2; cf. selected curves at
labels  2,  7,  and  8),  only  one  unique  algorithm makes
correct predictions of all data points (Fig. 46d, algorithm
[2];  cf.  Table 3,  D2).  A few  other  algorithms  produce
nearly as small MSD values but cannot correctly predict
all data  points.  For  example,  predictions  from
algorithm 10 (Fig. 46a) are often close to the data but miss
the data points in the left-hand curve section near label 1.
In  a  similar  way,  best  predictions  from  mixed
combinations (yellow curves in Fig. 46g and j) fall close to
many data  points  (label  2)  but  deviate  from others  in  a
systematic way (label 8). Overall, the qualities of various
fits to test series  J reflect the same ranking as the MSD
values in Table 3, C1-D2. 

Also for test series  WZ, the best fits are obtained with
power|0.33 algorithms. An almost perfect fit of matches in
dense blob configurations is produced from algorithm [2]
(Fig. 46f, label 10), and of matches in wide configurations

by the mixed combination [8:13] (Fig. 46l, label 12). But
note that all other algorithms with best fits in test series J
(10 in Fig. 46a; 5:10 in Fig. 46g; and [5:10] in Fig. 46j)
make rather bad predictions of the matching data in test
series WZ (Fig. 46c, i, and l, labels 4, 6, and 13).

In test series  WM4 predictions from several algorithms
again  collapse  (cf.  Table 3,  C/D4)  and  only  two  valid
MSD computations from unique algorithms could be made
(Fig. 46b). One algorithm (1=2=5=9; yellow) produced a
particular  good  fit  of  the  data,  the  other  algorithm
(11=12=14; blue) no fit at all (label 3). The graph shows a
third curve from algorithm 10, also with a rather bad fit,
which  is  only  plotted  for  comparison  with  Figure 46a,
where  predictions  from  algorithm  10  had  produced  a
particularly good fit of the data. For MSD computation in
test series WM4 (Fig. 46b), this algorithm was classified
invalid because one of the nine data points fell outside the
accepted luminance range (1/9 > 10%). Also with mixed
combinations, good fits with test series  J (e.g., C:5, label
2) do not necessarily predict good fits with other test series
(e.g., Fig. 46h, C:5, label 5). Best predictions from power|
0.33  transforms  (Fig. 46e,  k;  labels  9  and  11)  were
generally worse with this test series.

Figures 45 and 46 illustrate three important aspects of
these predictions, (i) their variability across different test
series,  (ii)  the,  in  principle,  similar  efficiency of  unique
algorithms  and  mixed  combinations,  and  (iii)  the
occasional  but  not  general  improvement  of  fits  when
replacing  the  linear  by  a  power|0.33-transformed
luminance  scale.  Although  the  best  fit  of  BRIGHT
minimum and maximum target matches in test series J was
obtained from a (unique) power|0.33 algorithm (Fig. 46d),
quite good and in some test series even better predictions
were  obtained  from algorithms  on  the  linear  luminance
scale or from mixed combinations. As a whole, the MSD
values  (Table 3)  are  similar  for  unique  and  mixed
combinations  and  for  linear  and  nonlinear  luminance
scales. Thus there is no general advantage of using power-
transformed instead of linear luminance scales or of using
unique instead of mixed algorithms when predicting target
matches of similar luminance polarity. 

Matches across different luminance polarities

This  pattern  changes  with  cross-polarity  matches
(Table 4).  Here,  best predictions from unique algorithms
on linear luminance scales are obtained with algorithm 3,
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which produces smaller MSD values than the other unique
algorithms  (Table 4,  A2  and  A4).  Most  other  “best”
predictions from the linear luminance scale are worse than

the  predictions  from  the  power|0.33  luminance  scale
(Table 4,  B2 and  B4).  This  is  particularly obvious  with
DARK  to  BRIGHT  maximum  target  matches  (Table 4,
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Figure 46. Predictions of BRIGHT minimum to maximum target matches. Plots show matching data from section B (black squares) together
with best predictions from different algorithms (colored curves). a-f. Predictions from “unique” algorithms on linear (a-c) and power|0.33-
transformed scales (d-e); g-l. according predictions from “mixed combinations” (g-i, linear; j-l, power|0.33 transforms); for details see text.
Good fits in certain test series are often singular results that do not transfer to other test series. Best predictions in each graph are plotted
yellow, for easier comaprison, and second-best ones red.
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A/B2) where the difference holds over all listed values and
where several algorithms on the power-transformed scale
made even better predictions than algorithm 3 (which is
“immune” against power transformations). 

The differences are obvious when looking at the quality
of predictions in detail (Fig. 47 and 48). With test series
block  WB,  for  example,  only  the  predictions  from
algorithm 3  fall  sometimes  close  to  the  data  (Fig. 47a)
even though the contrast of very bright (Fig. 47a, label 1)
or  very dark  targets  (Fig. 48a,  label 1)  is  systematically
exceeded.  Linear  predictions  from  the  other  algorithms
show larger and more frequent deviations from the data.
This changes when computations are based on a power-
transformed luminance scale (Fig. 47c, label 4, and 48c,
label 3). Now quite a few other predictions also fall close
to the data points, some even closer than the predictions
from algorithm 3. The difference is less obvious but also
present  in  the  predictions  from  mixed  combinations
(Fig. 47b,  d  and  48b,  d).  Here,  most  predicted  curves
partially deviate  from the  data  (Fig. 47,  labels  2  and  3;
Fig. 48, label 2), but predictions based on the power|0.33

transform  generally  fall  closer  to  the  data  points
(Figs. 47d,  label  5,  and  48d,  labels  4  and  5).  The
advantage  of  power|0.33-transformed  over  linear
luminance scales in  mixed combinations is  also seen in
Table 4; all MSD values from nonlinear luminance scales
are  smaller  than  the  values  from  linear  scales  at
corresponding ranking positions (cf. Table 4, B1 vs. A1
and B3 vs. A3). 

Remember  that  the  test  conditions (not  the  data)  in
series  WB2 were,  in  principle,  mirrored  from  the  test
conditions in series  WB1. What should that imply for the
analysis  of  best  fitting  algorithms?  First  of  all,  if  the
selection  of  mixed  combinations  would  at  all  be
meaningful, one should expect that the best combinations
in one test would simply be reversed in the other test. This
was not the case,  neither for  the best algorithms on the
linear nor for those on the nonlinear luminance scale (cf.
Table 4). None of the best combinations listed in one test
showed  up,  in  reversed  form,  in  the  list  of  best
combinations  for  the  other  test.  The  fact  that  some
algorithms  were  listed  in  mirrored  positions  but  in

Published  online: 6-Jun-2015       © christoph.nothdurft@vpl-goettingen.de                                                                                 ISSN:2364-3641

Figure 47.  Predictions of DARK (reference) to BRIGHT (test) maximum target matches in Experiment 11 (test series WB1). Data (black
squares) and predictions from all algorithms in Table 4 (colored curves); presentation as in the previous figures. For details see text. 
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combination with other algorithms (e.g. 2:10 and 10:A) is
simply due to the fact that exactly these algorithms had
been selected for the analysis of mixed combinations; the
same  lists  of  Table  2  were  used  for  combinations  of
identical  target  types.  The  failure  to  find  best  fits  from
reversed  combinations  in  test  series  WB1 and  WB2 is
surprising  and  suggests  that  the  exact  selection  of
algorithms in mixed combinations is far less important for
the  quality  of  fits  than  one  might  expect.  A  second
expectation  from  reversed  test  conditions  in  test  series
WB1 and  WB2 should be the consistence of  best fitting
unique algorithms; an algorithm that could reliably predict
the performance of target matches in one test series should
also reliably predict the performance in reversed matches.
For unique algorithms, there is indeed a high consistency
between best algorithms in mirrored test series, but only
for power|0.33 algorithms. Four of the five best algorithms
occur in both ranking lists (Table 4, B2 and B4). With the
linear  luminance  scales  (A2  and  4)  there  is  -  beside
algorithm 3 (Michelson contrast) - no overlap.

MSD distributions

On  a  first  view  one  might  have  assumed  that  mixed
combinations of algorithms should make better predictions
of  the  experimental  matches  than  unique  algorithms,  in
particular  when  algorithms  are  combined  that  closely
predict the salience properties of the involved targets. But,
as we have seen, the computational results do not support
this  assumption.  Although  predictions  from  mixed
combinations  were  quite  good  in  some  cases,  in  other
cases the predictions from unique algorithms might have
been better. In general, neither the MSD values in Table 3
nor the detailed inspection of predictions in Figures 46-48
have  revealed  any systematic  advantage  of  one  type  of
computation over the other.

This is also seen in the MSD distributions of Figure 49.
When ordered for  magnitude,  MSD values from unique
algorithms (lightly hatched bars) and mixed combinations
(densely hatched bars) intermingle; there is no indication
that mixed combinations (even not of algorithms optimal
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Figure 48.  Predictions of BRIGHT (reference) to DARK (test) maximum target matches in Experiment 11 (test series WB2). Data (black
squares) and predictions from all algorithms in Table 4 (colored curves); presentation as in the previous figures (but note the different
scales). For details see text. 
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for  the  compared  targets)  make  generally  better
predictions  of  the  data  than  unique  algorithms.  In  the
matches  of  DARK  and  BRIGHT  maximum  targets
(Fig. 49b), the best predictions were obtained from either a
mixed combination (upper graph) or a unique algorithm
(lower graph), but the best predictions from the other type
of computations were always close to these values.  The
same is true for the predictions of minimum-to-maximum
target matches in Figure 49a.

Note  that  the  argument  is  based  on  the  intermingled
sequence of MSD values when sorted for magnitude; the
sometimes  unequal  counts  in  the  distributions  must  not
confuse. Only in some graphs of Figure 49 were about as
many  values  from  unique  algorithms  as  from  mixed
combinations; in other distributions (e.g., the lower graph

of Fig. 49b) values from mixed combinations predominate.
This is due to the different numbers of tested algorithms.
While Table 1 lists 24 unique algorithms, some of which
are  mathematically  identical  in  certain  tests  and  then
shown only once in the distributions, the number of tested
mixed combinations can be larger and does not  include
mathematically  identical  computations.  Both  types  of
computations generated quite a few predictions outside the
experimental luminance range, so that the according MSD
values  had  to  be  set  invalid.  In  addition,  the  graphs  in
Figure 49  show only the  best  MSD  values;  particularly
large values are not plotted.

Really good predictions (MSD values  < 10) are  only
seen  with  the  BRIGHT  to  DARK  maximum  target
matches  (Fig. 49b);  in  all  other  matches  the  best
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Figure 49.  Distributions of MSD values in section B experiments.  a. MSD values for DARK (top) and BRIGHT (bottom) minimum to
maximum target matches accumulated from Experiments 9-10, 12 and 13.  b. MSD values for DARK to BRIGHT (top) and BRIGHT to
DARK target matches (bottom) in Experiment 11.  Histograms give the MSD values from linear analysis for  unique algorithms (lightly
hatched) and mixed combinations (cross-hatched). Red curves show the MSD values from power|0.33 analysis (not distinguished for unique
algorithms and mixed combinations). Both distributions, from linear and power|0.33 MSD analysis, are independently sorted for increasing
values; same positions thus do not necessarily refer to the same algorithm (different to the presentation in Fig.43). In all graphs values are
plotted until both distributions exceed a value of 150; larger MSD values are not shown. In the bottom graph of (b) there were many more
valid MSD values in the power|0.33 analysis (red) than in the linear analysis (histogram); these values are added on the right-hand side. The
graphs illustrate two major results from section C. Predictions from unique algorithms (lightly hatched) and mixed combinations (cross-
hatched) are not systematically different. Predictions from linear and power|0.33 analyses differ only in the cross-polarity matches of DARK
and BRIGHT targets (b); predictions from the power-transforms then produced, on average, smaller MSD values. When targets were similar
and both either DARK or BRIGHT, distributions of MSD values were more similar (a). 
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predictions are notably worse. For the DARK minimum to
maximum target matches (upper graph in Fig. 49a) this is
partly due to the averaging of data from dense and wide
configurations,  which  had  produced  different  matches.
The  much  smaller  MSD  values  of  the  individual  fits
(Table 3a) are here not shown.

Predictions from nonlinear luminance scales
The red curves in the graphs of Figure 49 show the MSD
distributions  from  nonlinear  analysis,  when  the  same
algorithms were tested after a power|0.33 transformation.
In both analyses, there were invalid data so that the two
MSD values from the same algorithms could often not be
compared.  Therefore,  different  to  Figure 43,  MSD
distributions from linear and nonlinear luminance scales
are here plotted independent of each other. Both show the
same count of  best  MSD values ordered for  magnitude,
but data points on the red curves and the according entries
in the bar histograms may come from different algorithms.

The  presentation  illustrates  an  important  point.  While
the  MSD  distributions  from  linear  and  power|0.33
computations  are  very similar  in  the  matches  of  similar
targets  in  different  configurations  (Fig. 49a),  the
distributions strongly differ in the matches of targets with
different  luminance  polarity  (Fig. 49b).  In  the  latter
matches,  there  are  many more  small  MSD values  from
power|0.33  algorithms (red  curves)  than  from power|1.0
algorithms (bar histograms). The differences between the
distributions are visualized in Figure 44.

Thus,  different  to  the  little  importance  of  nonlinear
luminance scales in the previous analyses, predictions of
cross-polarity matches are generally improved by power|
0.33 transforms. Nonlinear luminance scales are important
when  DARK  and  BRIGHT  targets  are  compared  for
salience (“cross polarity matches”) but not or less so when
similar  targets  within  the  same  luminance  polarity  are
compared,  i.e.  when  both  targets  are  either  DARK  or
BRIGHT.  An  interesting  behavior  in  this  aspect  shows
algorithm 3  (Michelson  contrast).  It  does  already
implement  a  magnitude-dependent  scaling  of  luminance
and is not affected by power transforms of the luminance
scale. Predictions from algorithm 3 were among the best
ones in  test  series  block  WB (cf. Table 4)  but  were still
topped by some power|0.33 algorithms. 

In summary,  we have seen that  matches of  different
target  types  were  sometimes  difficult  to  predict.
Combinations  of  algorithms  that  were  optimal  in
predicting  the  salience  characteristics  of  either  target

alone,  often  failed  to  predict  the  matching  performance
with  target  combinations.  In  most  cases,  these  mixed
combinations were  not  better  than  unique algorithms in
which salience matches were predicted from one common
algorithm, irrespective  of  whether  that  could  adequately
predict the salience characteristics of either target alone.
This  raises  questions  about  the  physical  basis  and
plausibility  of  fitting  algorithms.  Another  important
finding is that the prediction of salience matches between
BRIGHT  and  DARK  targets,  i.e.  between  targets  at
different luminance polarities, was strongly improved by
the usage of power-transforms. Best results were obtained
with a power|0.33 transform. This is in strong contrast to
matches  of  similar  targets,  which  could  reliably  be
predicted also from linear analysis.

Discussion of section C

Hints for  reading: Congratulations;  you have passed
the hardest part. The major findings of section C will
now be  summarized:  (i)  there  is  no  common super
algorithm  but  different  target  combinations  are
predicted  by  different  algorithms;  (ii)  algorithms  on
power-transformed  luminance  scales  help  to  predict
cross-polarity (dark  vs.  bright)  but  not  within-polarity
matches  (dark  vs.  dark  or  bright  vs.  bright).  After
discussion  of  the  general  properties  of  the  tested
algorithms,  the  best  algorithms for  each  target  type
are summarized. 

Although  not  all  matches  of  sections  A  and  B  were
predicted  exactly,  the  analysis  has  nevertheless  revealed
interesting results. First,  computations did not identify a
single “super” algorithm that could predict equal-salience
matches  in  all  test  conditions.  Instead,  the  quality  of
predictions  from  the  same  algorithms  differed  between
target types and target configurations. Second, in spite of
this variability, computations helped to rate algorithms that
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did predict,  and others  that  failed  to  predict,  the  equal-
salience  matches  in  a  particular  test  condition.  Third,
computations did, in particular, identify test conditions in
which  matches  were  better  explained  by  a  power-
transformed than the linear luminance scale. 

No “super-algorithm” for luminance-defined salience

One  reason  to  start  the  thorough  analysis  of  various
computational  algorithms  was  the  hope  to  find  an
algorithm that  could  account  for  all salience  variations
measured  in  sections  A and  B.  Contrary  to  this  hope,
however, the quality of predictions from most algorithms
varied  considerably when applied  to  different  targets  or
targets  in  different  configurations.  Algorithm  1,  for
example, that had closely fitted the equal-salience matches
of  DARK  maximum  targets,  produced  rather  poor
predictions of BRIGHT maximum target matches (unless
targets were the brightest items in the scene). Algorithm 5,
on the other hand, which gave the best fits to matches of
BRIGHT  targets  in  either  maximum  or  minimum
configuration, failed to predict the matches of targets in
exactly  this  combination.  Thus,  the  computations  in
section  C  contradict  the  idea  of  a  super-algorithm  for
luminance-defined salience and instead show that there are
many different algorithms that may fit the data of a certain
equal-salience match and fail in others. This is particularly
obvious  in  the  good  performance  of  hybrid  algorithms
tested on BRIGHT maximum target matches (Table 2H).
The  simple  averaging  of  two  computations  fitted  the
experimental data of some test series better than did either
of the tested algorithms alone. 

It is unlike however that the super-algorithm exists and
was not found because it was just not included in the list
of Table 1. All standard contrast algorithms were tested;
differences,  Weber  contrast,  Whittle  contrast,  Michelson
contrast,  and  various  ways  of  normalizing  the  target-
distractor  difference.  As  a  whole,  algorithms  covered  a
wide  spectrum  of  target,  distractor  and  background
combinations.  Rather,  experiments  have provided  strong
evidence  that  no  such  super-algorithm  for  luminance-
defined salience exists, at least none that would only be
based on the luminance settings of targets, distractors, and
background.  Many  experimental  matches  were,  in  fact,
closely predicted  by certain  algorithms,  which  however
failed when the same target was presented in a different
configuration or was matched with another target. 

General properties of tested algorithms 

Given this variability, it  might be interesting to evaluate
the  general  performance  of  algorithms  and  look  at
principle  differences  in  their  predictions.  Note  that  the
algorithms  of  Table 1  can  be  grouped  by  the  pattern
components  they  take  care  of.  One  major  group
(algorithms 1 to 3) represents pure measures of target-to-
distractor  differences  (discrimination  salience)  without
implementing  background  luminance  as  a  parameter.
Some of these algorithms produced rather good fits of the
data.  In  certain  matches,  however,  the  perceived  target
salience  did depend  on  background  luminance  and
algorithms  that  had  implemented  this  parameter  made
better predictions of the experimental data. Other matches,
in  wide  raster  configurations,  also  depended  on  item
salience,  and  item-to-background  differences  should  be
included  to  correctly  predict  these data.  And  target
salience might even depend on the comparison of various
salience components, which can only be predicted if they
are all implemented in the presumed salience computation.
Can we draw general conclusions about predictions from
these different algorithms?

Role of distractors. Although observers only had to match
targets, distractors clearly affected their performance. Two
algorithms  that  exclusively  encode  target-to-background
contrast but not distractor settings (algorithms 14 and 15)
generally failed to predict the obtained matches.

Role  of  background. Background  settings,  on  the  other
hand, were sometimes less important. Note that algorithms
1-3  which  do  not  care  of  background  luminance  are
frequently listed among the best algorithms in Tables 2-4.
This is not true for minimum targets, however, the salience
matches of which usually depended on both background
and  distractor  settings.  And  it  is  not  strictly  true  for
BRIGHT targets, the salience matches of which were often
seen  to  vary  with  background  luminance,  although
predictions from algorithm 2 were often quite good (e.g.,
Fig. 3).

Comparisons of item salience. If we assume that the item
salience of  targets  and  distractors  is  encoded  by  their
Weber  (or  Michelson)  contrast  to  background,  as  was
generally found for single items or pure distractor arrays
(Nothdurft, 2015), one might propose two principle ways
of  how  to  compare  these  values.  The  item  salience
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measures could be  subtracted, as in algorithms 4 and 13
(for Weber and Michelson contrasts, respectively), or be
divided, as  in  algorithms  11  and  12.  Algorithm 11  is
mathematically  equivalent  with  the  salmin algorithm 5,
which  is  frequently  listed  in  Table 2.  But  for  the
Michelson  contrast-based  computations,  differences
(algorithm 13)  are  far  more  frequent  than  ratios
(algorithm 12). 

Comparisons of discrimination and item salience. Another
interesting combination of target properties to look at is
the  comparison  of  target-to-distractor  and  target-to-
background  differences.  Here,  the  ratio of  values
(algorithms A and C)  had  provided  reliable  predictions,
but  not  their  differences (algorithms B and D).  That  is,
item salience and discrimination salience of the target are
apparently not subtracted to calculate its apparent salience.
But good fits from algorithms A and C are also not very
frequent and one cannot conclude that a target’s salience is
generally computed as the ratio of discrimination and item
salience.  However,  the  ratio  of  target-to-distractor  and
distractor-to-background  differences  (algorithms  9  and
10)  produced  good  singular  fits  (particularly  in  the
matches of DARK minimum and maximum targets). 

Normalization. An important aspect of salience estimates
is the normalization of luminance differences. Algorithms
1-7 (including Weber, Whittle,  and Michelson contrasts)
differ only in their normalization (which is even absent in
algorithm 1). In algorithms 8, 8a, and 8b, the Michelson or
Weber contrasts themselves are  normalized to  either  the
entire luminance span of the pattern (algorithms 8 and 8b)
or  to  the  predominant  luminance  span  given  by
background  and  distractor  luminance  (algorithm 8a).
Normalizing the Michelson contrast has been reported to
be critical for correct predictions of transparency (Singh &
Anderson, 2006) and did also reliably predict the matching
performance in several target combinations in the present
study.

Equal-salience  matches  do  not  measure  the  strength  of
salience. The  good performance of  algorithms A and C
with minimum targets underlines a principle limitation of
the computational analysis. These two algorithms compute
salience as the ratio of target-to-distractor (discrimination
salience)  and  target-to-background  contrasts  (item
salience).  Since  minimum  targets  vary  between
background  and  distractor  luminance,  either  one  of  the

two differences may become very small, and hence their
ratio very large.  It is unlikely,  however, (and was never
observed in the experiments) that a minimum target had
become extremely salient when approaching background
luminance. The opposite was found (and discussed above);
targets very similar to the background, in fact, loose their
item salience and are hard to be seen, quite different to the
salience modulation predicted from algorithms A and C.
Why did these algorithms then produce so good fits? The
fits  were  good  only  in  the  equal-salience  matches  of
section  A (Table 2,  rows  C  and  D)  where  similar  test
configurations  were  compared  without  measuring  the
strength of  each target’s  salience.  When the measure of
salience  itself  became  important,  as  in  the  matches  of
section  B,  predictions  from these  algorithms  were  poor
and did not reach the best-of lists of unique algorithms in
Table  3,  rows  A  and  B.  This  indicates  the  general
limitation  of  equal-salience matches  in  section  A.  Good
predictions in terms of small deviations of predicted from
experimental  data  per se do not  identify the  underlying
mechanism. The MSD can only measure the quality of a
particular algorithm to predict the experimental data but
cannot identify the validity of this computation. If stimulus
parameters between reference and test patterns change in
proportion, as in the experiments of section A, the fit may
be perfect even if the computed salience is quite different
to  what  is  perceived.  To  identify  the  algorithms  that
compute  salience,  we  thus  must  also  look  into  their
performance in detail and verify that they indeed behave
the same way as perception does. 

Best salience algorithms

I  shall  now  summarize  the  findings  of  section  C  for
different target types. But before going into details of the
computations,  it  seems helpful  to  recall  some important
properties of the tests and computations. 

1.  DARK  and  BRIGHT  targets  do  not  necessarily
display different luminance but are named so because of
their  different  luminance  polarity  to  background.  In
comparison to distractors, however, minimum targets have
a  different  polarity  than  maximum  targets,  DARK
minimum  targets  are  brighter,  and  BRIGHT  minimum
targets darker, than distractors. 

2. Weber contrast (algorithm 2) and Michelson contrast
(algorithm 3) make the same predictions for equal-salient
targets  that  have  the  same  luminance  polarity  to  the
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comparator.  For  item  salience  (target-to-background
differences) that would be the case when both targets are
DARK or BRIGHT but not  when DARK and BRIGHT
targets are matched. For discrimination salience (target-to-
distractor differences), however, the two algorithms make
identical  predictions  only  when  targets  have  the  same
luminance  polarity  to  distractors,  e.g.  when  maximum
targets  are  matched  to  maximum  targets,  or  minimum
targets  to  minimum  targets.  If  this  is  not  the  case,
predictions  from the  Weber  contrast  and  the  Michelson
contrast  will  differ.  In  all  other  conditions,  however,  a
good fit of predictions from the Weber contrast does not
indicate that it would be better suited than the Michelson
contrast, and vice versa. 

This is quickly verified by computing the luminance of
an equal-salient target,  tg2, from the according algorithms
in  Table 1.  For  the  combination  of  two  BRIGHT
maximum targets (similarly two DARK maximum targets)
we obtain
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but  for  the  combination  of  a  BRIGHT  and  DARK
maximum target
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Thus,  while  for  computations  based  on  the  Michelson
contrast  the  ratio  of  the  brighter  to  the  dimmer item is
maintained,
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for computations based on the Weber contrast the ratio of
target  to  distractor  luminance  remains  important,  or
eventually its complement to 2,
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3. The evaluation of predictions was largely based on
the analysis of MSD values, which tell nothing about the
underlying  mechanism  (as  discussed  above  with
algorithms A and C). Several examples in section C have

shown  that  even  curves  with  opposite  modulation  may
generate  similarly  small  MSD  values  and  may  thus
indicate similarly good fits, which are however not based
on similar mechanisms.

DARK maximum targets
The overall best predictions of matching data in section A
were  obtained  from  algorithm 1,  the  constant-addition
principle.  Targets  appeared  equally  salient  among
distractors when their luminance difference to distractors
was constant. This finding is remarkable in two aspects.
First,  it  stresses  the  little  importance  of  background
luminance in the salience computation of DARK popout
targets  (which  was  tested  in  Experiment 4  and  is
demonstrated in Fig. 14). Second, the finding is contrary
to  what  one  might  have  expected  from natural  viewing
conditions, where predominant luminance variations come
from  illumination  changes  and  result  in  constant-ratio
luminance changes of  purely reflective surfaces.  If  item
and  discrimination  salience  had  to  be  constant  under
different  illuminations,  one  might  expect  that  salience
computation  should  follow  algorithm 2  rather  than
algorithm 1.  In  natural  scenes,  constant  addition
(algorithm 1) should only occur with self-luminous items
which typically are brighter than their surroundings. (It is
not easy to imagine dark equivalents that would subtract a
constant amount of luminance. The only examples I could
think of are holes, which would however show no surface
reflection  and  hence  no  additive  component  at  all.)  It
should be stressed though, that the luminance variations in
the present study were arbitrary and usually not consistent
with  a  natural  illumination  change;  background  and
distractor settings have been varied independently all over
the available luminance ranges. 

On a first glance, however, algorithm 2 (constant ratio)
did apparently make quite good predictions of the data in
some test series (cf. Table 2, row A). But this impression is
misleading.  In  two  series  (K and  F),  predictions  from
algorithm 2  (and  3)  should  be  (about)  as  good  as
predictions  from  algorithm 1,  because  distractors  were
(about) identical (cf. equation 2). In test series L, the better
performance of algorithm 1 was simply not listed because
it generated too many invalid predictions and hence was
excluded  from  MSD  analysis.  Careful  inspection  of
Figures 5 and 6, however, suggests that predictions from
algorithm 1 were not always bad in these test series but
mainly  deviated  from  the  data  at  very  low  luminance
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settings.  Altogether,  in  the  analysis  of  all  matches  with
DARK  maximum  targets,  predictions  from  algorithm 1
were  better  than  predictions  from algorithm 2  (Table 2,
A5).  Particularly in  test  series  L and  J,  also predictions
from algorithm 8 (Singh & Anderson,  2006) were quite
good (and almost  indistinguishable  from the  predictions
from  algorithm 1  in  Fig. 17)  but  the  general  form  of
predictions (Fig. 18) does not seem to reflect the measured
data  (Fig. 19).  In  the  Totals,  this  algorithm  performed
worse than algorithm 1. 

Fits did generally not improve when nonlinear instead
of linear luminance scales were used, except for matches
of DARK and BRIGHT maximum targets (Table 4). Here,
predictions based on power|0.33-transforms of luminance
were generally better than predictions based on the linear
luminance scale. For DARK to BRIGHT target matches,
predictions  from  algorithms  [1]  were  the  best;  for
BRIGHT to  DARK matches  they were  among the  best
ones listed in Table 4. 

Despite the good performance of algorithm 1 in matches
of DARK maximum targets, the algorithm was apparently
less valid in predicting the matches of DARK minimum to
maximum targets (Table 3, row A). When looking at these
matches in the scatter plots of Figure 27, however, a linear
but  differently  weighted  relationship  is  obvious.  Equal-
salient luminance variations are reduced to about 60% in
maximum targets. 

BRIGHT maximum targets
The  original  suspicion  (Fig. 3)  that  salience  matches  of
BRIGHT (maximum and minimum) targets might follow
the  salmin algorithm 5 was confirmed.  Predictions from
algorithm 5  were  the  best,  or  second-best,  in  almost  all
top-five listings of Table 2 (rows E and G). Only in test
series block L it had to be set invalid, since more than 10%
of the predictions fell outside the tested luminance range.
Here,  best predictions were obtained from the  constant-
ratio  principle,  algorithm 2,  which  also  made  good
predictions in most other test series. As can be seen from
the formulas in Table 1, the two algorithms are similar for
low background luminance (for zero backgrounds they are
identical); thus their similar performance is not surprising.
In spite of the good performance of these two algorithms
with BRIGHT maximum and BRIGHT minimum targets
(Table 2, E5 and G5), predictions from these algorithms
were  poorer  in  direct  matches  of  these  two  targets
(Table 3, rows C and D) except in test series WM4. Even
though both algorithms are listed among the top fives with

series  J,  performance  was  better  with  algorithm  [2].
Slightly better  predictions  of  BRIGHT maximum target
matches in test series K and F (cf. Table 2) were obtained
from  algorithm 8b  (a  modification  of  the  Singh
algorithm 8  based  on  Weber  instead  of  Michelson
contrast).  Other  variants  of  that  algorithm,  algorithms 8
and 8a, also occurred in the top-five lists of Table 2.

Overall,  the  predictions  of  BRIGHT maximum target
matches  were  poorer  (larger  MSD  values)  than  the
predictions of DARK maximum target matches. This was
changed  by  the  use  of  hybrid  algorithms,  in  which
predictions from two selected  algorithms were averaged
(Table 2H).  Three  standard  algorithms  were  chosen  for
these  averages,  the  constant-addition  principle
(algorithm 1),  the  constant-ratio  principle  (algorithm 2),
and  the  salmin algorithm 5.  Some  of  these  averages
produced  notably  better  predictions  than  the  algorithms
themselves. This suggests that subjects might have made
their  adjustments  along  two  lines  of  computations.  In
particular,  combinations  of  algorithms  1  or  2  and
algorithm 5  (<1,5>  and  <2,5>)  made  often  good  pre-
dictions of the data, whereas the combination of constant-
addition and  constant-ratio  (<1,2>)  did  usually  not
improve the fits. 

As a whole, predictions based on nonlinear luminance
scales were not better than predictions based on the linear
scale for matches of BRIGHT targets. Certain algorithms,
however,  made  better  predictions  when  applied  to  the
power|0.33  scale  (Table 2,  E/F5).  For  example,
algorithm 1 made poorer predictions (MSD value 71.8, not
listed) than algorithm [1] (MSD value 34.9). But a strong
general improvement from replacing the linear luminance
scale by the power|0.33 transforms was only seen in the
cross-luminance-polarity matches of DARK and BRIGHT
maximum targets (Table 4).

DARK minimum targets
Predictions  of  minimum  target  matches  were  generally
very good, despite the occurrence of local deviations as
demonstrated  in  Experiment 5  (Fig. 10).  The  best
algorithms for DARK minimum targets (Table 2, row C)
were algorithms 10, A, C, 12, and 5 in all test series except
series  F (where the latter three algorithms in the list are
replaced  by algorithms 13,  B,  and  9),  but  a  ranking  of
predictions with such small deviations from the data might
not be meaningful. The quality of fits was reduced in test
series block O but the ranking of best algorithms was still
similar to that in test series block K.
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Given the already low MSD values obtained from linear
computations, it is not surprising that predictions were not
improved  when  the  power-transformed  instead  of  the
linear luminance scale was used (Table 2, row D). 

From  this  high  quality  of  predictions  for  DARK
minimum target matches it is surprising that predictions of
DARK  minimum  to  maximum  target  matches  were  so
much poorer  (Tables 3  and  3a).  The best  predictions of
different target matches were obtained from algorithms 9
(dense  configurations)  and  8a  (wide  configurations,
sample2 data), which were both not listed as particularly
successful  in  the  best-of  lists  for  DARK  minimum  or
DARK  maximum  target  matches  themselves  (Table  2,
A/C5). 

BRIGHT minimum targets
Similar  observations  are  made  with  the  predictions  of
BRIGHT  minimum  target  matches.  MSD  values  were
generally small and similar across the different test series
(Table 2, rows G and H). About the same algorithms made
the  best  predictions  on  linear  and  power-transformed
luminance  scales,  with  only  little  if  any  systematic
improvements  on  either  scale.  Different  to  DARK
minimum  target  matches,  however,  there  is  more
consistency  between  best  algorithms  for  BRIGHT
maximum or minimum target matches (Table 2, E5, G5)
and best algorithms for BRIGHT minimum vs. maximum
target matches (Table 3, C7-C8), even though MSD values
differ. Both mixed combinations and unique algorithms in
Table 3 list several algorithms that are also listed in Table
2, rows G and H. 

Matches of different target types
Close  predictions  of  the  experimental  data  (small  MSD
values)  were  generally  rare  in  the  matches  of  different
target  types  (Tables 3  and  3a).  Good  fits  were  highly
selective and often found for only one or two algorithms,
sometimes  then  even  restricted  to  matches  in  dense  or
wide blob configurations; most other algorithms produced
large deviations  from the  experimental  data.  For  DARK
minimum vs.  maximum target matches,  only one unique
algorithm (algorithm 9) produced a reasonably small MSD
value for matches in dense configurations of test series  J
(Table 3a, A2a and b); this algorithm could however not
reliably  fit  the  similar  matches  in  other  test  series  (cf.
Fig. 45c  and  d).  For  matches  in  wide  configurations,

which strongly suffered from item salience effects, several
algorithms  produced  reasonable  MSD  values  (Table 3a,
A2c),  but  these matches were only little  modulated (cf.
Fig. 45b)  and  good  predictions  might  thus  not  be
meaningful. Also in mixed combinations, good matches if
found at all were singular events; most predictions were
rather bad.

The same is  true for  BRIGHT minimum to maximum
target matches.  The  experimental  data  were  closely
predicted by only few algorithms (e.g., unique algorithms
10 and [2]), and small MSD values are rare in the lists of
Table 3. It is interesting to note that the unique algorithm
5, which made the best predictions of BRIGHT minimum
and  maximum  target  matches  (Table 2,  E/G5),  was
relatively poor (MSD values > 50) in predictions of both
targets  matched  to  each  other,  except  in  series  WM4
(Table 3, C4). 

Finally,  even  the  matches  of  DARK  to  BRIGHT
maximum  targets (and  vice  versa) were  not  perfectly
predicted (Figs. 47 and 48; Table 4). Best predictions were
obtained  from algorithms on  the  power|0.33-transformed
luminance scale. The most important observation here is
that predictions based on power-transforms were generally
better than predictions from the linear luminance scale.

Generalization and Conclusions

Several conclusions can now be drawn from this summary.
One is that in most matches of similar targets there is not
just one algorithm that fits the data but data are often fitted
similarly well be several different algorithms. In some test
series,  even  more  algorithms  than  listed  in  Table 2  had
produced good predictions of the data, which also reflects
the high intrinsic correlation of algorithms in these tests.
In matches of  dissimilar targets, however, good fits were
rare, so that the top-five listings in Tables 3 and 4 include
algorithms that clearly misfit the data. Another important
conclusion is that predictions from plausible combinations
of  presumed  salience  algorithms  were,  in  general,  not
better than predictions from arbitrary unique algorithms. In
fact,  which  algorithm produced the  best  prediction  of  a
particular equal-salience match was not clear beforehand
and could apparently not be deduced from the ranking of
targets  and  distractors  in  the  two  patterns  and  their
salience  computation  in  other  test  series.  The  exact
algorithms were less important for equal-saliency matches
than one should expect if salience computation were based
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on few constant rules. Even when the data from one test
series were closely fitted by a certain algorithm, this same
algorithm may have failed on other test series. 

Interestingly  however,  responses  were  not  generally
uncertain  but  almost  all  matches  had  revealed  similar
results from the different observers. This suggests an, at
this  stage  of  the  project,  speculative  explanation.  Test
conditions  might  have  been  even  more  distinct  than
assumed. Instead of distinguishing DARK and BRIGHT
targets in maximum and minimum configurations, it might
have  been  important  to  distinguish  further  ranking
differences like, e.g., test targets being brighter or darker
than  reference  distractors,  or,  e.g.,  test  targets  being
brighter than reference targets. If these further distinctions
had been important but were not made, the resulting fits of
various  algorithms  in  different  test  series  should  be
arbitrary  and  should  also  depend  on  the  selection  of
included test conditions. There are several examples that
would  support  such  a  view;  the  fact  that  equal-salience
matches  of  homogeneous  blob  patterns  follow  different
rules when backgrounds are same or different (Nothdurft,
2015);  the  observation  that  bright  blob  arrays  are
differently  matched  when  either  reference  blobs  or  test
blobs are the brightest items in the stimulus (Exp. 10; see
also  Nothdurft,  2015);  and  the  performance  differences
seen  with  test  series  O12 (Figs. 7  and  16)  and  O12a
(Fig. 12) that was already discussed above. It might be that
salience computation is  based on a  framework of  rules,
some  acting  more  generally  (like  the  usage  of  power-
transforms  when  targets  differ  in  lightness  and  are
presented  on  largely  different  backgrounds),  others
perhaps depending on the detailed luminance distribution
and item configuration in the stimulus and in a given test
series.

Summary of section C

Section C has shown the following results. 
1.  There  is  no  unique  super  algorithm  that  would

compute target salience in all different stimulus patterns.
2. Many – even perfect – matches of experimental data

were arbitrary; algorithms that closely predict the salience
properties  of  stimulus  components  do  not  necessarily
predict the matching performance when these components
are compared to another.

3.  Salience  matches  of  targets  that  differ  in  contrast
polarity to background (thus appearing bright or dark) are
best predicted by computations on a power transform of
luminance,  whereas  matches  of  targets  with  the  same
contrast polarity may also be predicted by algorithms on a
linear scale.

While  the  latter  conclusion  could  leave  everything
uncertain,  the  experimental  observations  have  indicated
the opposite. Almost all matches revealed similar matching
results by different subjects.

GENERAL DISCUSSION

Hints  for  reading: This  last  Discussion  evaluates
possible  methodological  problems  and  brings  a
number  of  demonstrations  that  are  supposed  to
illustrate the observed differences between DARK and
BRIGHT  target  matches.  Consequences  for  equal-
salient target matches and the role of target location in
the visual field are discussed.

When I have started the project of measuring luminance-
defined salience, I expected convincing findings with clear
rules (and hopefully no exceptions) that could be studied
in a few months. I was wrong. Already the accompanying
study on blob arrays and single targets (Nothdurft, 2015)
showed  that  there  were  several rules  (and  quite  a  few
exceptions)  some  even  pointing  into  the  huge  field  of
brightness and lightness perception which I tried to avoid
since it has already kept busy so many laboratories over so
many years. But when moving from homogeneous arrays
to popout patterns (one target, several distractors), as in
the  present  study,  the  difficulties  seemed  to  grow
exponentially.  Interestingly,  there  always  seemed  to  be
rules, as the different observers produced similar results,
but  these  rules  appeared  to  vary  across  test  series  and
could not easily be generalized. That often suggested to
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Conclusions from discussion:

The super  algorithm for  luminance-defined  salience
does  not  exist.  –  Best  fits  of  salience  matches  in
simple targets are summarized:

DARK maximum targets: algorithm 1,
BRIGHT maximum targets: algorithm 5.

Salience variations of minimum targets are predicted
from several algorithms, those of target combinations
only  as  singular  solutions  of  arbitrary  algorithms.
Cross-polarity matches are power-based.

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           82

expand the study and include further test series to find the
general  rules  (with  only  few  exceptions)  behind  all
variations—the normal scientific progress.

The  present  paper  is  full  of  such  expansions  (some
added early, some late) but has still not yet reached a final
simple  and  general model,  although  many findings  are
robust and can be described by clear rules. The problem is
not the eventual missing of certain rules but rather their
diversity  and  their  variability  in  different  tests.  The
necessity to explain different salience matches by a large
variety  of  complex  algorithms  which  often  can  only
predict the matches of one particular test combination is
unsatisfactory. May be future work will provide a simpler
and better synopsis of all these findings.

However, the various rules are already presented above
and  do  not  need  to  be  repeated  here.  Instead,  I  will
concentrate  on  two  major  lines  of  discussion.  First,  of
course,  I  have  to  discuss  potential  shortcomings  and
pitfalls  of  the  study.  Have  there  been  problems  with
generating  the  appropriate  luminance  settings  in
experiments? Did subjects perform the tasks as they were
supposed  to?  Are  measures  real  or  artificial?  Second,  I
will try to illustrate some findings of the study and discuss
consequences  for  equal-salience  matches  of  different
targets.  I  will  show examples of  good and bad salience
matches  and  demonstrate  how  salience  perception  may
change with retinal location––an issue that is particularly
important for salience-controlled gaze shifts.

Matching difficulties

Monitor luminance
Two  principle  problems  in  luminance  studies  are  (i)
eventual variations or uncertainties in measuring monitor
luminance  and (ii)  luminance variations over  the  screen
that occur on almost all monitors. I have tried to exclude
or compensate for these problems in the present study.

Monitor  luminance was repeatedly measured over the
course of the study with a Spotmeter (Photo Research); in
addition,  the  readings  were  two  times  compared  (and
confirmed) with readings from new or freshly calibrated
Spectrometers (also Photo Research) borrowed from other
labs. All readings were constant over the time of the study.

But it should be stressed that even systematic variations
of photometer sensitivity or monitor luminance should not
have affected the analysis of salience matches in the study.
If the luminance measures tg, dis, and bg in the formulas

of Table 1 had been replaced by wrong values  tg’,  dis’,
and bg’ which had systematically over- or underestimated
the true luminance values by a factor, f, 

   tgftg '   ,      disfdis '   ,    and    bgfbg '  , 

the factor would cancel out in all predictions of section C.
Monitor inhomogeneities, and thus eventual differences

between targets at different screen locations, are not easy
to avoid and were also seen in the present experiments.
Their effects were studied in early matching experiments.
When the  positions  of  reference and  test  targets  on the
monitor were exchanged, the resulting deviations were not
larger  than  random  variations  obtained  in  repeated
measurements with test targets on either one side alone.
Since the data of the present study represent averages of
matches with exchanged stimulus patterns, a possible error
from monitor  inhomogeneities  should thus be small and
cannot  explain  the  much  larger  luminance  variations
obtained with different test conditions.

Modulation by selective attention 
Notably  stronger  was  the  modulation  of  a  target’s
brightness (and salience) when an observer attended to it.
It is well known that attention may modulate the salience
and brightness of an attended object (Carrasco,  Ling, &
Read, 2004; Reynolds & Desimone, 2003; Treue, 2004) in
quite  a  similar  way as  luminance  (and  brightness)  may
modulate salience (this study) or attract attention (Irwin,
Colcombe,  Kramer,  &  Hahn,  2000;  Spehar  &  Owens,
2012;  Theeuwes,  1994,  1995).  In  a  preliminary  test  of
monitor  inhomogeneities,  in  which  an  observer  had  to
attend over many trials to one particular target location,
this effect was, in fact, so dramatic that strong luminance
inhomogeneities  on  the  monitor  had  been  assumed.
However,  when  the  monitor  was  turned  upside-down,
these  differences  did  not  rotate  with  the  monitor  but
remained at the location to which the observer attended. 

In the experiments  of  the present  study,  however,  the
effects  from  attentional  modulation  can  be  assumed  to
have  been  small  and  negligible,  since  observers  had  to
compare  two  objects,  the  reference  target  and  the  test
target, and were required to shift their attention frequently
between these objects.

A related issue may be priming effects  which can be
seen  when a  target  or  stimulus  pattern  from a  previous
presentation  is  repeated  in  a  subsequent  presentation
(Theeuwes & Van der Burg, 2013). However, since in the
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present study two targets had to be compared and matched
in salience and since patterns followed each other in very
slow frequency, it  is  unlikely that  direct  priming effects
have  played  a  substantial  role.  The  fact,  however,  that
matches  in  different  test  series  could  follow  different
algorithms  (as  found  and  discussed  with  Experiment 6
above) may weaken this statement. In “uncertain” matches
in which targets could be matched according to different
rules  (as  in  test  series  O;  cf.  Figs. 7,  11 and  12),  there
might have been a bias to one of these rules if the matches
along this rule predominated the sample. 

Task difficulties
The instructions were clear; observers had to match two
targets in salience. But it was not always clear, what that
would  mean.  Although  observers  were  instructed,  to
evaluate  the  perceived  target  salience  and  not any
perceptual constructs such as, e.g., the apparent luminance
difference  of  targets  and  distractors  or  the  apparent
sharpness (contrast gradient) of the target on background,
it was not always clear what they indeed had looked at.
The salience of a target is based on various aspects, on
item salience and discrimination salience (as distinguished
in the present study) but also on contrast and brightness
(as illustrated, e.g., in Nothdurft, 2015, Fig. 10). It is likely
that observers attended to all these different aspects when
performing the matches but might have been biased to one
or the other aspect in a certain task. An obvious example
are  the  different  matches  of  DARK  minimum  and
maximum  targets  in  Experiment 9  (Fig. 22)  where
subjects had sometimes ignored the low item salience of
targets. 

This  variety of  salience aspects  might have been one
reason  why matches  of  some  test  conditions  were  less
certain than others.  But it  must nevertheless be stressed
that all these different aspects do contribute to the salience
of a target and that there is no reasonable way to exclude
one or the other aspect from the percept of salience. But it
may be that some salience aspects are more important than
others for a certain visual function. The quickly accessed
luminance contrast of a target, for example, might be more
important for the control of fast gaze shifts than the slow
and careful evaluation of brightness differences. But this
remains  to  be  shown.  Despite  all  variations,  however,
performance was very similar across observers and usually
well reproduced in repeated runs.

Generalized findings and consequences

In the very last  part  of  the paper I will  illustrate  major
findings  of  the  study and  discuss  some  interesting  and
perhaps  unexpected  consequences.  Some  observations
were  already illustrated;  the  distinction  of  item salience
and discrimination salience (Fig. 13); the different effects
of background luminance on target salience (Fig. 14); and
the influence of blob density on the maximum-minimum
paradigm (Fig. 36). 

Different algorithms for DARK and BRIGHT targets
Matches  have  revealed  a  principle  difference  in  the
salience  computation  of  DARK  and  BRIGHT  targets.
With  DARK  maximum  targets,  equal  salience  was
independent of background luminance and best predicted
by the constant-addition rule (algorithm 1). With BRIGHT
targets,  however,  equal  salience  could  vary  with  the
luminance  span  of  background  and  distractors  (salmin
algorithm 5), with the constant-ratio rule (algorithm 2), or,
if the target to be adjusted was the brightest item in the
scene, with the constant-addition rule (algorithm 1). Thus,
both  target  types  differed  in  the  computation  of  equal
salience  and,  in  addition,  BRIGHT  targets  were  less
precise and less unique in the algorithm to follow. 

These differences are illustrated in Figures 50 and 517.
In  each  row,  the  target  in  the  reference  pattern  is
“matched” by other targets that were predicted as equal-
salient  among  their  distractors  from different  rules.  For
DARK  targets (Fig. 50),  the  overall  best  matches  are
obtained with algorithm 1. Matches from other algorithms
are sometimes too little modulated (the target is less salient
than  in  the  reference  pattern),  e.g.  algorithms 2=3  and
sometimes [1], or over-modulated (the target is far more
salient  than  in  the  reference  pattern),  e.g.  algorithm 5,
particularly with dimmer backgrounds (rows d and e). For
BRIGHT targets (Fig. 51), the overall best matches should
be obtained with algorithms 2 and 5. With some patterns
(e.g.,  rows  b  and  d),  better  matches  might  lie  between
these  predictions  (as  would  predictions  from  the  new
hybrid  algorithms).  Some matches  from algorithm 1  are
too little modulated (e.g., rows b and d) and some  from
algorithm [1]  too  strongly  (e.g.,  row  c).  Overall,  there

7  To see all effects in this and the following figures appropriate luminance 
settings in the printouts are important. That might be achieved with a 
postscript printer that linearly reproduces the intended luminance settings;
see Appendix. For inspections on a monitor you have to adjust the gamma
correction. 
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Figure 50. Illustration of DARK maximum target matches with different algorithms. Each row shows various matches of the reference
pattern based on the algorithms listed above. The overall best matches are obtained with algorithm 1. Matches from other algorithms show
often too little or too strongly salient targets. (You need a printer with linear output characteristics to see appropriate luminance variations;
see Appendix.)
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Figure 51. Illustration of BRIGHT maximum target matches with different algorithms.  Each row shows various matches of the reference
pattern based on the algorithms listed above. According to the experiments, the overall best matches should be obtained with algorithms 5
and 2 (or in between), and for particularly bright targets even with algorithm 1. In most columns some targets are slightly less or more salient
than the reference target. But many targets can be accepted as about equal-salient to it. (You need a printer with linear output characteristics
to see appropriate luminance variations; see Appendix.)

http://www.vpl-reports.de/2/


VPL-reports 2, 1-97  (2015)                                                           www.vpl-reports.de/2/                                                                                                           86

seem  to  be  fewer  obvious  mismatches  with  BRIGHT
targets in Figure 51 than with DARK targets in Figure 50.

Reference  targets  in  Figure 51  were  not  arbitrary but
computed from the DARK reference targets in Figure 50
with algorithm [1] (which gave the best results for DARK
to BRIGHT cross-polarity matches). Thus it is possible to
verify even these matches by comparing the salience of
reference  targets  in  Figures 50  and  51.  By  and  large,
Figures 50 and 51 thus demonstrate the main findings of
the equal-salience matching experiments. 

The differences between algorithms, however, are often
not  very  strong.  Some  targets  look  equal-salient  even
when generated from the “wrong” algorithm.  Apparently,
our visual system is quite tolerant and may even accept
targets  as  “about” equal-salient  that are,  in fact,  notably
different. (Just compare the various examples in Figs. 50
and  51.)  This  uncertainty  in  salience  estimates  may
indicate that small variations in target luminance are less
important  for  salience  estimates  than  one  might  have
thought.

Matching sequences are (theoretically) non-commutative
Given the different equal-salience algorithms for DARK
and BRIGHT targets, we may go one step further. While
we should be able to find two equal-salient DARK targets
(algorithm 1) and to  each DARK target  an equal-salient
BRIGHT target (algorithm [1]), the two BRIGHT targets
are  not  necessarily  equal-salient  to  each  other
(algorithm 5).  That  is,  equal-salience  matches  are  com-
putationally  non-commutative.  Note  however  that
convincing  examples  of  such  non-commutative  matches
are  difficult  to  find  in  Figures 50  and  51.  The  large
tolerance of our visual system to accept wrong predictions
still  as  equal-salient  may  help  to  overcome  the
theoretically predicted misfits.

Foveal vs. peripheral inspections
An  important  role  of  salience  is  the  guidance  of  eye
movements  to  behaviorally  relevant  objects  (Beutter,
Eckstein,  &  Stone,  2003;  Borji,  Sihite,  &  Itti,  2013;
Koehler,  Guo,  Zhang,  &  Eckstein,  2014;  van  Zoest  &
Donk,  2005).  For  that,  salience  differences  of  targets
presented  parafoveally or  in  the  periphery of  the  visual
field  should  be  far  more  important  than  salience
differences of targets that are already foveated, as in the
experiments  of  the  present  study.  Simultaneous  salience

matches of targets in the periphery and sequential matches
of  targets  in  the  fovea  may  produce  different  results;
brightness comparisons may dominate the foveal matches
(Nothdurft,  2015).  For  many  stimuli,  however,  the  two
inspection modes give similar results. Differences should
mainly depend on the different spatial modulation transfer
functions (MTF) at different eccentricities in the retina and
thus be largely predictable (cf. Cornsweet, 1970). 

The MTF has the form of an inverted U (with smaller
reduction  on  the  low  spatial  frequency  side).  When
moving  towards  locations  in  retina  periphery,  the
maximum of the MTF shifts  towards lower frequencies.
To illustrate and enhance the changes between foveal and
peripheral inspections we may thus construct patterns that
take  care  of  these  differences.  An  attempt  is  made  in
Figure 52.  Targets  and  distractors  in  the  left-hand  wide
blob raster have the same luminance settings as targets and
distractors  in  the  right-hand dense  blob  raster.  Also  the
backgrounds are identical. When the individual targets are
foveated, they all stand out conspicuously, except those in
the bottom patterns. But if you compare their conspicuity
among  distractors,  then  some  targets  in  the  right-hand
patterns  stand  out  slightly  more  vividly  than  the
corresponding  targets  in  the  left-hand  patterns  (since
luminance differences there would be mainly represented
in  lower  spatial  frequency  bands).  This  difference  will
reverse, however, when you fixate the crosses between the
patterns  and  then  look  for  salience  differences  between
targets in your retina periphery. When moving your gaze
from the upper to the lower crosses you may then notice
that the targets in the dense blob raster disappear earlier
(because  the  spatial  frequency  bands  that  encode  the
differences  are  strongly  reduced  in  the  MTF  at  this
eccentricity) than the targets in the wide blob raster on the
left.  Variations of this sort are not specific properties of
salience representation but should be similarly seen with
any visual stimulus. However, these differences would be
extremely  important  for  salience-controlled  eye  move-
ments, as only salience effects that are detected outside the
fovea may evoke a gaze shift towards the target. 

This  demo  illustrates  the  extremely  sensitive
competition of luminance modulation, retinal location and
general sensitivity in the functional aspects of luminance-
defined  salience.  Whether  targets  that  differ  in  salience
can  attract  attention  or  gaze  strongly  depends  on  their
actual retinal location and hence the current gaze of the
observer.  Small  gaze  shifts  can  let  targets  appear  and
previously salient targets disappear from the salience map.
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This  effect  is  particularly  dramatic  if  targets  are
embedded  in  (many)  distractors,  as  illustrated  in
Figure 53. The two targets in the upper picture are
made equal-salient (algorithm 1) in their surround-
ings (which you may verify by foveating the targets
in alternation). But which target would attract your
gaze  depends  on  where  you  actually  are  looking
(beside many other effects). If you happen to look at
blobs  on  the  left-  or  right-hand  side,  the  nearer
target  appears  more  salient  and  will  likely attract
your  gaze  and  attention.  You  may  verify  this  by
fixating  various  locations  on  the  upper  or  lower
frame. Only when you happen to look at blobs in
the  middle  near  the  central  cross,  should  both
targets  be  equal-salient  and  equally  attract  your
gaze. 

There are various ways to make such targets more
attractive.  One  is  to  reduce  the  blob  density  and
minimize  background  structure.  As  can  be
experienced  in  the  lower  picture  of  Figure 53,
removing  all  distractors  strongly  enhances  the
conspicuity of both targets for fixations everywhere
in  the  pattern.  Both  targets  may now attract  your
gaze and attention,  although they clearly differ  in
salience. Their different saliency, however, is only
noticed when you fixate the central cross. Another
way  to  increase  a  target’s  salience  would  be  to
increase its contrast and thus make it more salient
than  before.  But  when  you  compare  the  two
examples  in  Figure 53  you  will  notice  that  these
targets are already quite salient. In this example, the
removal of distractors to overcome restrictions from
the limited spatial resolution in retina periphery has
a much stronger effect  on the target’s  conspicuity
(outside the fovea) than gradual increments of the
target contrast.

Our  natural  visual  environment  is  highly
structured and full of gradual luminance variations;
luminance-defined  salience  effects  in  such  a
surrounding  should  strongly  suffer  from  the
modulation  transfer  function  at  different  retinal
locations.  It  may  thus  be  that  luminance-defined
salience  differences  play  only  a  minor  functional
role in such surroundings except when targets are
large or spatially isolated, or particularly bright or
dark. The interaction of luminance modulation and
positional effects on the retina may also explain why
some studies did, and others failed to find a strong
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Figure 52. Illustration  of  salience variations with viewing  eccentricity.
The perception of luminance gradients depends on the local modulation
transfer function,  MTF, which varies with  retinal  eccentricity.  This is  a
common phenomenon in vision and not  related particularly to salience.
The difference between target and distractors in the left-hand and right-
hand patterns  is represented in  different  spatial  frequency bands.  When
foveating each target at an appropriate viewing distance, some targets in
the  left-hand  patterns  may  appear  slightly  less  conspicuous  than  the
according targets  in  the  right-hand patterns,  e.g.,  rows  b and  c.  When
looking  at  the  targets  parafoveally  or  in  the  retina  periphery,  e.g.  by
fixating  the  crosses  in  the  middle,  the  ranking  may change  and  some
targets  in  the  left-hand  patterns  may look  more  conspicuous  than  the
according  targets  in  the  right-hand  patterns,  e.g.,  row  d.  Luminance
settings in left- and right-hand patterns of a row are identical. (You need a
printer without local contrast enhancement; see Appendix.)
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correlation of luminance-defined salience and evoked gaze
shifts  (Borji,  Sihite,  & Itti,  2013;  Einhäuser and König,
2003). 
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Figure 53. Luminance-defined salience depends on contrast, structure, and eccentricity.  In the pattern above, the two targets are equal-
salient in their surroundings. But which of them attracts your gaze depends on where you are looking. Try it out by fixating various locations
on the upper or lower frame. Only when you look at the central cross, both targets are equal-salient and may equally attract your gaze. When
distractors are removed, as in the pattern below, both targets may attract your gaze from all over the frame, despite their different item
salience. (You may need a postscript printer to see the effect; see Appendix.)
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Table 1. Salience algorithms used in predictions. 

For each algorithm, the proposed salience of the reference target was calculated from its luminance settings in a given test condition. It was
equated with the matched salience of the test target, the luminance settings of which could then be predicted from the known background
and distractor settings. Quadratic deviations of predicted from experimental results were calculated and averaged over all test conditions of a
particular test series to obtain the mean squared deviation, MSD, for a given algorithm and test series block. See section C for more details.

Reference in text proposed salience algorithm Description, Comments

# name

Target-Distractor Comparisons
1 Luminance Difference |distg|sal  ~ luminance difference of target and distractors 

Luminance Ratio distgsal  ~ ratio of target and distractor luminance; predictions 
identical to those from (2)

2 Weber Contrast
dis

|distg|
sal


~ Weber Contrast of target and distractors 

2a Whittle Contrast
),min(

~
tgdis

|distg|
sal


Whittle’s form of Weber Contrast; ≡(2) for tg>dis 

2b max
),max(

~
tgdis

|distg|
sal

 luminance difference normalized to maximum; ≡(2) 
for dis>tg

3 Michelson Contrast
distg

|distg|
sal




~ Michelson Contrast of targets and distractors 

Target-Distractor Luminance Differences in Various Normalizations 
Including Background Luminance Settings

4 “sal-bg”
bg

|distg|
sal


~ normalization to background luminance 

5 “salmin”
||

~
bgdis

|distg|
sal


 normalization to the background-distractor 

luminance span

6 Diff | lum-range
minmax

~

 |distg|

sal Normalization to full luminance range; for minimum 
target configurations ≡(5) 

7 Diff | max-lum
max

~
|distg|

sal


normalization to luminance maximum 

8 “Singh”

minmax

||

~




distg

distg

sal
Michelson Contrast of target and distractors, 
normalized to the full luminance-range in the pattern

8a “Singh-spec”

||
~

disbg
dis+tg

|distg|

sal


 Michelson Contrast of target and distractors, 
normalized to the background-distractor luminance 
span

8b “Weber-Singh”

minmax
~




dis

|distg|

sal
Weber Contrast of target and distractors, 
normalized to the full luminance-range in the pattern

ctd.
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Intermediate Ratio Computations

      
Ratio of Relative 
Differences

|distg|sal  ~  : |bgdis|  ratio of the target-distractor and distractor-
background luminance differences; ≡(5)

9
Ratio of Relative WC
WCtg:dis:WCdis:bg bg

|bgdis|

dis

distg
sal


:

||
~ ratio of the target-distractor and distractor-

background Weber Contrasts

10
Ratio of Relative MC
MCtg:dis:MCdis:bg distg

|distg|
sal




~ : bgdis

|bgdis|


 ratio of the target-distractor and distractor-

background Michelson Contrasts

Difference and Ratio Computations of Item Contrasts (to Background)
Ratio of Absolute 
Differences

|bgtg|sal  ~  : |bgdis|  ratio of the target-background and distractor-
background luminance differences; ≡(11)

11 Ratio of Absolute WC
bg

|bgdis|

bg

bgtg
sal


:

|
~ ratio of the target-background and distractor-

background Weber Contrasts 

12 Ratio of Absolute MC
bgtg

|bgtg|
sal




~ : bgdis

|bgdis|


 ratio of the target-background and distractor-

background Michelson Contrasts 

Differences of Item Contrasts (to Background)

WCtg-WCdis
bg

|bgdis|

bg

bgtg
sal




|
~ difference of the target-background and distractor-

background Weber Contrasts; ≡(4)

13 MCtg-MCdis
bgtg

|bgtg|
sal




~ – bgdis

|bgdis|


 difference of the target-background and distractor-

background Michelson Contrasts

14 WC (bg)
bg

|bgtg|
sal


~ Weber Contrast of target to background (no 

influence from distractor luminance)

15 MC (bg)
bg+tg

|bgtg|
sal


~ Michelson Contrast of target to background (no 

influence from distractor luminance)

Further Intermediate Computations

A
Ratio of Relative to 
Absolute WC
WCtg:dis:WCtg:bg bg

|bgtg|

dis

distg|
sal


:~ ratio of the target-distractor and target-background 

Weber Contrasts

B
Difference of Absolute 
and Relative WC
WCtg:dis-WCtg:bg dis

|distg|

bg

bgtg|
sal





 ~ difference of the target-background and the target-

distractor Weber Contrasts

C
Ratio of Relative to 
Absolute MC 
MCtg:dis:MCtg:bg bgtg

|bgtg|

distg

distg|
sal







:~ ratio of the target-distractor and target-background 
Michelson Contrasts

D
Difference of Absolute 
and Relative MC
MCtg:dis:MCtg:bg distg

|distg|

bgtg

bgtg|
sal








~ difference of the target-background and the target-
distractor Michelson Contrasts

E
Special Ratio of 
Differences ||

|
~

bgtg

distg|
sal


 ratio of target-distractor and target-background 

luminance differences; for maximum targets ≡(6); 
predictions identical to those from (11)
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Table 2. Best MSD values of similar target matches (Exp. 1-4, 7-8). 

For every target type (rows) and test series block (columns), the table lists the five smallest MSD values of predicted and measured equal
salience matches, together with the according algorithm (gray cells) from Table 1. Best values in each cell are printed red. MSD values were
computed for all test conditions of a given test, including wide and dense blob configurations. Rows labeled ”power|0.33” show the MSD
values for predictions based on power-transforms of luminance (exponent x=0.33); for details see text in section C. Note that algorithms can
be identical (symbol ≡) for a given target type or may lead to identical predictions (symbol =) even when the according salience measures
differ. General identities are listed in the first column; they are valid for the entire row and the accompanying power|0.33 row underneath.
Algorithms that produced the same result in a given test condition are listed together, with that value. Note that MSD values in a cell may
differ considerably, indicating a clear distinction of better and worse predictions from different algorithms, or may be generally small (or
large), indicating a generally good (or bad) performance of several algorithms in predicting the experimental data of this particular test
condition.

(1) (2) (3) (4) (5)

Series K Series L/O Series F Series J total

alg alg alg alg alg

DARK Targets
13 2,3 8 3,3 2 1,2 1=4 8,5 1 5,4

(2≡2a=2b=3) 2 2,8 13 13,0 1 1,4 8 9,5 13 9,6
(A) (4≡7) 1 3,0 8b=A 13,4 13 1,7 13 16,1 4 11,3

A 13,3 2 15,8 A 7,9 8b=A 30,9 A 19,6
(14=15) 4 16,0 14 460,7 C 13,1 2 52,3 8 20,1

power|0.33 [4] 1,7 [1,4] 12,2 [4] 0,6 [1,4] 19,6 [4] 10,6
[13] 2,5 [13] 15,4 [13] 0,8 [8] 33,8 [1] 10,7

(B) [2] 2,8 [8] 15,6 [2] 1,2 [13] 46,7 [13] 22,7
[1] 2,9 [2] 15,8 [1] 1,3 [2] 52,3 [2] 25,3
[A] 27,0 [14] 460,7 [A] 17,4 [8b,A] 63,5 [8] 28,7

A 0,8 10 2,3 A 0,6 10 1,4
(2≡2a=2b=3) 10 0,9 A 3,9 13 0,9 A 1,8

(C) C 1,3 C 7,1 10 1,1 C 3,8
12 2,0 12 12,7 B 2,6 12 6,7
5 2,9 5 27,9 9 2,8 5 12,6

power|0.33 [A] 1,0 [A] 2,7 [9] 0,6 [A] 1,8
[10] 1,2 [10] 4,8 [4] 0,8 [10] 2,8

(D) [12,C] 1,3 [C] 5,7 [B] 1,6 [C] 3,2
[5] 1,7 [12] 6,2 [A] 2,1 [12] 3,5

[8b] 1,8 [5] 10,8 [10] 2,9 [8] 5,0

BRIGHT Targets
8b 6,0 2 15,5 8b 13,9 5 4,9 5 21,4

(2≡2a=3=2b≡7) 5 6,1 1,4 83,1 5 14,2 2 5,7 2 28,0
8a 8,9 14 401,8 8a 17,7 C 6,1 C 32,3

(E) (14=15) 8 11,6 8 20,2 10 9,8 13 35,4
13 13,9 Series LX: 2 24,0 13 14,5 10 44,7

2 16,2
power|0.33 [8b] 18,1 [13] 12,0 [13] 14,1 [13] 4,8 [13] 18,3

[5] 18,2 [2] 15,5 [1] 23,8 [2] 5,7 [2] 28,0
[8a] 19,9 [1,4] 31,1 [2] 24,0 [5] 8,6 [1] 34,9

(F) [8] 20,5 [14] 401,8 [8b] 29,4 [C] 11,5 [5] 43,0
[C] 25,4 Series LX: [5] 29,5 [10] 12,4 [8b] 47,2

[2] 16,2
5,8b 1,7 5,10 1,6 8 3,0 5 2,2

10 2,7 C 2,0 8b 4,9 10 3,6
(G) C 3,9 12 3,3 5 5,0 C 5,0

(8≡8a) 8 5,6 13 3,9 10 12,4 8 10,7
(14=15) 12 8,3 A 4,4 1 16,0 8b 12,0

power|0.33 [5,8b] 3,1 [5] 1,5 [13] 8,6 [5] 4,4
[8] 3,2 [10] 1,7 [8] 15,1 [8] 5,5

(H) [10] 4,3 [C] 1,8 [1] 16,4 [10] 6,1
[C] 4,5 [12] 1,9 [2] 16,5 [C] 6,3

[12] 5,0 [A] 2,4 [8b] 16,8 [8b] 6,9

Maximum Conditions

(5≡11=6=E)

Minimum Conditions

(4≡7)   (8≡8a)
(5≡11=6=E)

(14=15)

Maximum Conditions

(5≡11=6=E)

Minimum Conditions
(2≡2b≡7=2a=3)

(5≡11=6=E)

For entries in cell E4 (BRIGHT maximum targets, Series J) the first test conditions with test targets brighter than reference targets 
are not included in analysis
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Table 2H. Improvements by the use of hybrid algorithms. 

In addition to Table 2 rows E and F, the table lists the MSD values for hybrid algorithms. Best values are printed in red and are eventually
copied from Table 2 if there was a better MSD value than obtained here.

(1) (2) (3) (4) (5)

Series K Series L/O Series F Series J total

alg alg alg alg alg

Hybrid Algorithms 8b 6,0 2 15,5 <1,5> 4,5 <2,5> 4,6 <2,5> 13,1
     vs. Best Predictions <1,5> 10,7 <1,5> 16,4 <2,5> 4,6 <1,5> 20,4 <1,5> 16,5
          Otherwise <2,5> 11,1 <1,2> 34,4 <1,2> 23,7 <1,2> 27,6 <1,2> 39,5

(E) <1,2> 66,4 <2,5>  -

Series LX:
2 16,2

<2,5> 21,3
<1,5> 39,4
<1,2> 60,9

power|0.33 <[1],[5]> 6,8 [13] 12,0 <[2],[5]> 6,0 [13] 4,8 <[1],[5]> 12,3
<[2],[5]> 6,9 <[1],[2]> 25,8 <[1],[5]> 6,0 <[2],[5]> 4,8 <[2],[5]> 14,2
<[1],[2]> 67,0 <[1],[5]>  - <[1],[2]> 23,9 <[1],[5]> 5,2 <[1],[2]> 31,2

(F) <[2],[5]>  - <[1],[2]> 9,9

Series LX:
[2] 16,2

<[1],[5]> 17,0
<[1],[2]> 21,1
<[2],[5]> 28,2

BRIGHT Targets Maximum Conditions
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Table 3. Best MSD values for minimum to maximum target matches in Experiments 9-10, 12 and 13. 

Presentation  as  in  Table 2,  except  that  predictions  were  obtained  from  “mixed  combinations”  and  “unique  algorithms”  (see  text).
Computations were made on all test series in a given block, including matches from dense and wide configurations. However, since these
two configurations had produced quite different matches for DARK targets in test series block J, these data were also split for an additional
analysis (cf. Table 3a).

(1) (2) (3) (4)

Series J Series WM1, WM4

mixed unique mixed unique

alg alg alg alg

Minimum vs. Maximum Conditions
DARK Targets 5:A 78.8 * 9 59.2 * A:1 34,6 3=8a=10 8,3

identities (unique algorithms only): A:1 88.2 * 8a 92.9 * 5:A 35,7 8 37,6

(A) (1=4≡7)   (2a=2b=3) 10:A 113.1 * 10 128.1 * C:1 43,6 11=12=14 905,4

(14=15) C:1 137.2 * 8 128.8 * 10:1 76,6

8:13 213.3 * 5 134.9 * 5:1 78,0

power|0.33 [8:2] 49.6 * [9] 93.9 * [8:4] 6,1 [3=8a=10] 8,3

[8:4] 52.3 * [8] 114.3 * [8:2] 10,2 [13] 9,3

(B) [5:A] 115.2 * [8a] 115.9 * [8:13] 17,3 [1=2=5=9] 19,0

[8:1] 133.8 * [10] 131.3 * [5:1] 31,2 [11=12=14] 905,4

[10:A] 144.4 * [5] 132.5 * [10:1] 34,3

BRIGHT Targets 5:10 5,0 10 9,0 10:2 9,4 1=2=5=9 9,6

identities (unique algorithms only): C:5 16,0 2 52,5 5:2 11,3 11=12=14 630,8

(C) (1=4)   (2a=3=2b≡7) C:2 34,7 5 77,4 10:5 19,3

(14=15) 5:2 39,1 1 84,6 C:5 56,3

10:2 49,8 8a 105,3 8b:13 126,2

power|0.33 [5:10] 9,6 [2] 2,1 [8b:2] 12,3 [11=12=14] 630,8

[8:13] 13,5 [10] 18,3 [8b:C] 27,2

(D) [8b:2] 47,9 [5] 40,9 [8b:10] 41,7

[10:5] 51,2 [8a] 44,3 [8:2] 44,4

[8:2] 101,1 [1] 54,2 [8b:5] 67,3

* Large differences between MSD values for wide and dense arrangements due to item salience
effects. Individual values are shown in Table3a.

Table 3 (ctd) (5) (6) (7) (8)

Series WZ total

mixed unique mixed unique

alg alg alg alg

Minimum vs. Maximum Conditions
DARK Targets 5:A 49,6 8a 29,8 5:A 70,6 9 64,2

identities (unique algorithms only): C:1 99,5 5 44,6 A:1 86,9 8a 75,6

(A) (1=4≡7)   (2a=2b=3) A:1 147,5 10 46,3 10:A 112,7 10 104,2

(14=15) 8:13 152,6 9 132,1 C:1 120,9 5 117,0

10:1 156,1 14 172,6 8:13 189,4 8 118,2

power|0.33 [8:4] 41,1 [9] 29,7 [8:2] 43,5 [9] 77,8

[8:2] 41,2 [8a] 39,4 [8:4] 44,9 [8a] 94,1

(B) [8:1] 89,5 [5] 46,7 [5:A] 111,4 [10] 106,8

[12:1] 98,5 [10] 48,0 [8:1] 118,1 [5] 109,1

[5:1] 134,9 [14] 172,6 [5:1] 143,0 [8] 118,9

BRIGHT Targets C:5 22,4 2 31,4 C:5 27,2 2 37,5

identities (unique algorithms only): 5:2 25,4 10 53,6 5:2 29,4 10 40,8

(C) (1=4)   (2a=3=2b≡7) 10:2 28,7 5 73,0 10:2 35,4 5 60,0

(14=15) 10:5 86,8 8 101,8 C:2 53,3 1 99,4

5:10 115,9 8a 107,9 5:10 53,5 3 101,4

power|0.33 [8:13] 11,7 [2] 25,2 [8:13] 30,0 [2] 12,1

[C:5] 31,2 [8b] 50,5 [8b:2] 37,1 [5] 41,7

(D) [8b:2] 38,0 [10] 56,5 [5:10] 38,6 [10] 46,6

[5:10] 65,7 [5] 61,3 [10:5] 46,4 [8b] 57,6

[10:5] 67,0 [8a] 71,8 [8:2] 86,7 [8a] 64,5
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Table 3a. Split analysis for DARK targets in series J of Table 3. 

Analysis was performed on different sub-samples of the data, dense, wide sample1, and wide sample2 (see Fig.23). Only the three (four) best
values are given in each cell; most other values were above 100.

Table 4. Best MSD values for the cross-polarity matches in Experiment 11. 

(1a) (1b) (1c) (2a) (2b) (2c)

Series J
mixed unique

dense wide sample1 wide sample2 dense wide sample1 wide sample2

alg alg alg alg alg alg

Minimum vs. Maximum Conditions
DARK Targets 10:A 38,1 10:A 36,2 C:1 32,8 9 15,5 9 22,0 8a 5,4

(identities as in Table 3) 5:A 48,4 5:A 89,2 8:13 37,2 1 86,7 1 61,0 10 8,5

(A) A:1 69,4 A:1 113,3 10:1 39,9 6 96,9 8 61,3 5 12,4

power|0.33 [8:4] 18,3 [8:4] 36,4 [8:1] 10,2 [8] 79,2 [8] 52,6 [8a,9] 7,0

[8:2] 18,6 [8:2] 39,2 [8:A] 38,5 [6] 81,9 [6] 82,0 [10] 9,5

(B) [5:A] 47,9 [10:A] 62,1 [8:2] 91,1 [9] 108,3 [1] 99,9 [5] 10,4

[10:A] 62,2 [5:A] 62,6

(1) (2) (3) (4)

Series <W,WB1> Series WB2

different unique different unique
alg dense alg dense alg dense alg dense

 DARK vs. BRIGHT Targets  BRIGHT vs. DARK Targets
Maximum Conditions A:2 23,9 3 39,5 13:4 13,2 3 5,7

 identities (unique): 2:10 26,3 1 72,8 C:2 14,2 13 9,2

(A) A:5 60,4 2 75,5 10:A 23,3 8 11,8

(5=6=11=E) 4:C 78,8 5 76,1 C:A 25,1 C 13,5

13:C 84,2 8b 79,8 13:2 42,4 10 19,0

power|0.33 [A:1] 15,3 [1] 29,8 [8b:4] 7,1 [13] 4,0

[A:5] 22,8 [2] 30,1 [13:4] 9,6 [3] 5,7

(B) [1:5] 24,1 [7] 35,4 [8b:2] 10,1 [7] 11,4

[4:2] 46,4 [13] 39,3 [13:8] 10,5 [5,8b] 11,6

[13:8b] 58,1 [3] 39,5 [C:1] 15,3 [1] 12,3

(2a=2b=3)
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APPENDIX

To see the intended effects in Figures 13, 14, and 50-53
your printer should produce linear luminance variations, as
for  example  obtained  with  a  postscript  printer.  In

particular, there should be no contrast enhancement in the
print. If you have a possibility to measure the luminance of
illuminated  paper,  print  out  Figure A1  and  measure  the
reflected light in the individual patches. It is important that
the illumination does not vary during these measurements,
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Figure A1. Linear printout scheme. If you have the possibility to measure the luminance of illuminated paper, print this figure and measure
the luminance of the various squares under constant illumination (hold the setup stable and only move the printout). Ideally, you should
obtain a linear variation of the measures with the numbers given under each square.
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so hold the setup constant  and move the paper,  not  the
lights. If you get a nearly linear relationship between the
measured luminance and the values printed underneath the
various patches, you should have a good chance to see the
above  figures  as  intended.  Using  printouts  of  this  kind
(with slightly different luminance settings) the author has
obtained a fairly linear relation of luminance settings and
measured luminance for printouts from a postscript printer.
Note that linear luminance variations in Figure A1 do not
represent linear sensation differences in perception.

To see all intended effects on a  monitor, however, you
likely have to modify the gamma correction in the display
of figures.
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Figure A2. The “fairly linear” reproduction of a figure like Fig.A1
with  a  postscript  printer,  verified  by  measuring  (under  constant
illumination) the luminance of printed patches with a photometer.
Despite  minor  deviations,  the  general  course  of  luminance
variations is almost linear–different to the brightness percept of the
patches in Fig.A1. If your printer works in a similar way and does
not show local contrast enhancement, you may have a good chance
to see the “demos” in this paper as intended.

Published  online: 6-Jun-2015

For later additions and for comments see http://www.vpl-reports/2/ 

© christoph.nothdurft@vpl-goettingen.de

This document is copyrighted by the author and only for personal, non-commercial use. For any other purposes, please contact the author

http://www.vpl-reports.de/2/

